Simon has a prime number x and an array of non-negative integers a1, a2, ..., an.
Simon loves fractions very much. Today he wrote out number on a piece of paper. After Simon led all fractions to a common denominator and summed them up, he got a fraction:
, where number t equals xa1 + a2 + ... + an. Now Simon wants to reduce the resulting fraction.
Help him, find the greatest common divisor of numbers s and t. As GCD can be rather large, print it as a remainder after dividing it by number 1000000007 (109 + 7).
Input
The first line contains two positive integers n and x (1 ≤ n ≤ 105, 2 ≤ x ≤ 109) — the size of the array and the prime number.
The second line contains n space-separated integers a1, a2, ..., an (0 ≤ a1 ≤ a2 ≤ ... ≤ an ≤ 109).
Output
Print a single number — the answer to the problem modulo 1000000007 (109 + 7).
Examples
Input
2 2 2 2
Output
8
Input
3 3 1 2 3
Output
27
Input
2 2 29 29
Output
73741817
Input
4 5 0 0 0 0
Output
1
Note
In the first sample . Thus, the answer to the problem is 8.
In the second sample, . The answer to the problem is 27, as 351 = 13·27, 729 = 27·27.
In the third sample the answer to the problem is 1073741824 mod 1000000007 = 73741817.
In the fourth sample . Thus, the answer to the problem is 1.
#include<stdio.h>
#include<algorithm>
using namespace std;
#define min(a,b) (a<b?a:b)
#define LL long long int
#define maxn 100000+10
#define g 1000000007
LL a[maxn];
LL quick_mod(LL a,LL b)
{
LL ans=1;
a=a%g;
while(b)
{
if(b&1)
ans=ans*a%g;
a=a*a%g;
b>>=1;
}
return ans;
}
int main()
{
LL x,n,i,sum=0;
scanf("%lld%lld",&n,&x);
for(i=0;i<n;i++)
{
scanf("%lld",&a[i]);
sum+=a[i];//分母的次数k
}
for(i=0;i<n;i++)
a[i]=sum-a[i];//分子的次数k
sort(a,a+n);
LL ans,cnt=1;//cnt为系数
a[n]=-1;
for(i=1;i<=n;i++)
{
if(a[i]!=a[i-1])
{
if(cnt%x)
{
ans=a[i-1];
break;
}
else
{
cnt/=x;
a[i-1]+=1;
i--;
}
}
else cnt++;
}
ans=min(ans,sum);
printf("%lld\n",quick_mod(x,ans));
return 0;
}
因为x是素数,所以要想使以x为底数的幂指数提高,必须要有x的整数倍数因子。
for循环主要就是为了完成(x^a0+x^a1+……+x^an-1)/(x^sum) (解释 其中a0<a1<……<an-1) 当分子分母同时除以必有的公因子x^a0后。得到( 1+x^(a1-a0)+x^(a2-a0)+……+x^(an-1-a0) )/( x^(sum-a0) ) 如果此时(指数从小到大看)有指数一样的就合并,若合并的结果是x的整数倍,那么x的指数就增大一,则公因子就增大x倍。 巧妙的是,指数相等合并并不是总体的,从小到大一段一段来的。