spark入门

Using a Mesos Master URL

The Master URLs for Mesos are in the form mesos://host:5050 for a single-master Mesos cluster, ormesos://zk://host:2181 for a multi-master Mesos cluster using ZooKeeper.

The driver also needs some configuration in spark-env.sh to interact properly with Mesos:

  1. In spark.env.sh set some environment variables:
    • export MESOS_NATIVE_LIBRARY=<path to libmesos.so>. This path is typically <prefix>/lib/libmesos.so where the prefix is /usr/local by default. See Mesos installation instructions above. On Mac OS X, the library is called libmesos.dylib instead of libmesos.so.
    • export SPARK_EXECUTOR_URI=<URL of spark-1.0.1.tar.gz uploaded above>.
  2. Also set spark.executor.uri to <URL of spark-1.0.1.tar.gz>.
edit /etc/profle append :
export MESOS_NATIVE_LIBRARY="/usr/local/lib/libmesos.so"
 

Now when starting a Spark application against the cluster, pass a mesos:// URL as the master when creating aSparkContext. For example:

val conf = new SparkConf()
  .setMaster("mesos://HOST:5050")
  .setAppName("My app")
  .set("spark.executor.uri", "<path to spark-1.0.1.tar.gz uploaded above>")
val sc = new SparkContext(conf)

(You can also use spark-submit and configure spark.executor.uri in the conf/spark-defaults.conf file. Note that spark-submit currently only supports deploying the Spark driver in client mode for Mesos.)

When running a shell, the spark.executor.uri parameter is inherited from SPARK_EXECUTOR_URI, so it does not need to be redundantly passed in as a system property.

./bin/spark-shell --master mesos://host:5050

Mesos Run Modes

Spark can run over Mesos in two modes: “fine-grained” (default) and “coarse-grained”.

In “fine-grained” mode (default), each Spark task runs as a separate Mesos task. This allows multiple instances of Spark (and other frameworks) to share machines at a very fine granularity, where each application gets more or fewer machines as it ramps up and down, but it comes with an additional overhead in launching each task. This mode may be inappropriate for low-latency requirements like interactive queries or serving web requests.

The “coarse-grained” mode will instead launch only one long-running Spark task on each Mesos machine, and dynamically schedule its own “mini-tasks” within it. The benefit is much lower startup overhead, but at the cost of reserving the Mesos resources for the complete duration of the application.

To run in coarse-grained mode, set the spark.mesos.coarse property in your SparkConf:

conf.set("spark.mesos.coarse", "true")

In addition, for coarse-grained mode, you can control the maximum number of resources Spark will acquire. By default, it will acquire all cores in the cluster (that get offered by Mesos), which only makes sense if you run just one application at a time. You can cap the maximum number of cores using conf.set("spark.cores.max", "10") (for example).

 

启动spark:

./bin/spark-shell --master mesos://127.0.1.1:5050
 
  
 
  
#测试
scala> val file = sc.textFile("hdfs://hadoop-master:9000/tmp/WifiScan_None_20140723.csv")
scala> val count=file.flatMap(line => line.split(" ")).map(word => (word,1)).reduceByKey(_+_)
scala> count.count()
http://spark.apache.org/docs/latest/running-on-mesos.html
MATLAB主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性内容概要:本文主要介绍了一种在MATLAB环境下实现的主动噪声和振动控制算法,该算法针对较大的次级路径变化具有较强的鲁棒性。文中详细阐述了算法的设计原理与实现方法,重点解决了传统控制系统中因次级路径动态变化导致性能下降的问题。通过引入自适应机制和鲁棒控制策略,提升了系统在复杂环境下的稳定性和控制精度,适用于需要高精度噪声与振动抑制的实际工程场景。此外,文档还列举了多个MATLAB仿真实例及相关科研技术服务内容,涵盖信号处理、智能优化、机器学习等多个交叉领域。; 适合人群:具备一定MATLAB编程基础和控制系统理论知识的科研人员及工程技术人员,尤其适合从事噪声与振动控制、信号处理、自动化等相关领域的研究生和工程师。; 使用场景及目标:①应用于汽车、航空航天、精密仪器等对噪声和振动敏感的工业领域;②用于提升现有主动控制系统对参数变化的适应能力;③为相关科研项目提供算法验证与仿真平台支持; 阅读建议:建议读者结合提供的MATLAB代码进行仿真实验,深入理解算法在不同次级路径条件下的响应特性,并可通过调整控制参数进一步探究其鲁棒性边界。同时可参考文档中列出的相关技术案例拓展应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值