tf教程(六):Time travel with tf

本教程深入探讨了ROS中tf的高级时间旅行功能,通过实例演示如何让机器人基于过去的位置信息进行导航,包括使用高级API精确指定帧转换的时间。

Time travel with tf (C++)

Description:  This tutorial teaches you about advanced time travel features of tf

Tutorial Level:  ADVANCED 

In the previous tutorial we discussed the basic concept of tf and time. This tutorial will take this one step further, and expose one of the most powerful tf tricks.

Time travel

So let's go back to where we ended in the previous tutorial. Go to your package for the tutorial:

  $ roscd learning_tf

and open the file src/turtle_tf_listener.cpp. Take a look at lines 25-30:

  try{
    ros::Time now = ros::Time::now();
    listener.waitForTransform("/turtle2", "/turtle1",
                              now, ros::Duration(1.0));
    listener.lookupTransform("/turtle2", "/turtle1",
                             now, transform);

Now, instead of making the second turtle go to where the first turtle is now, make the second turtle go to where the first turtle was 5 seconds ago:

  try{
    ros::Time past = ros::Time::now() - ros::Duration(5.0);
    listener.waitForTransform("/turtle2", "/turtle1",
                              past, ros::Duration(1.0));
    listener.lookupTransform("/turtle2", "/turtle1",
                             past, transform);

So now, if you would run this, what would you expect to see? Definitely during the first 5 seconds the second turtle would not know where to go, because we do not yet have a 5 second history of the first turtle. But what after these 5 seconds? Let's just give it a try:

  $ make  or  catkin_make
  $ roslaunch learning_tf start_demo.launch
  • random.png

Is your turtle driving around uncontrollably like in this screenshot? So what is happening?

  • We asked tf, "What was the pose of /turtle1 5 seconds ago, relative to /turtle2 5 seconds ago?". This means we are controlling the second turtle based on where it was 5 seconds ago as well as where the first turtle was 5 seconds ago.

  • What we really want to ask is, "What was the pose of /turtle1 5 seconds ago, relative to the current position of the /turtle2?".

Advanced API for lookupTransform

So how can we ask tf a question like that? This API gives us the power to say explicitly when each frame is transformed. This is what the code would look like:

  try{
    ros::Time now = ros::Time::now();
    ros::Time past = now - ros::Duration(5.0);
    listener.waitForTransform("/turtle2", now,
                              "/turtle1", past,
                              "/world", ros::Duration(1.0));
    listener.lookupTransform("/turtle2", now,
                             "/turtle1", past,
                             "/world", transform);

The advanced API for lookupTransform() takes six arguments:

  1. Give the transform from this frame,
  2. at this time ...
  3. ... to this frame,
  4. at this time.
  5. Specify the frame that does not change over time, in this case the "/world" frame, and
  6. the variable to store the result in.

Notice that waitForTransform() also has a basic and and advanced API, just like lookupTransform().

  • time_travel.png

This figure shows what tf is doing in the background. In the past it computes the transform from the first turtle to the world. In the world frame tf time travels from the past to now. And at time now tf computes the transform from the world to the second turtle.

Checking the results

Let's run the simulator again, this time with the advanced time-travel API:

  $ make  or catkin_make
  $ roslaunch learning_tf start_demo.launch

And yes, the second turtle is directed to where the first turtle was 5 seconds ago!

【事件触发一致性】研究多智能体网络如何通过分布式事件驱动控制实现有限时间内的共识(Matlab代码实现)内容概要:本文围绕多智能体网络中的事件触发一致性问题,研究如何通过分布式事件驱动控制实现有限时间内的共识,并提供了相应的Matlab代码实现方案。文中探讨了事件触发机制在降低通信负担、提升系统效率方面的优势,重点分析了多智能体系统在有限时间收敛的一致性控制策略,涉及系统模型构建、触发条件设计、稳定性与收敛性分析等核心技术环节。此外,文档还展示了该技术在航空航天、电力系统、机器人协同、无人机编队等多个前沿领域的潜在应用,体现了其跨学科的研究价值和工程实用性。; 适合人群:具备一定控制理论基础和Matlab编程能力的研究生、科研人员及从事自动化、智能系统、多智能体协同控制等相关领域的工程技术人员。; 使用场景及目标:①用于理解和实现多智能体系统在有限时间内达成一致的分布式控制方法;②为事件触发控制、分布式优化、协同控制等课题提供算法设计与仿真验证的技术参考;③支撑科研项目开发、学术论文复现及工程原型系统搭建; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,重点关注事件触发条件的设计逻辑与系统收敛性证明之间的关系,同时可延伸至其他应用场景进行二次开发与性能优化。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值