IMU Preintegration On Manifold(1)

本文详细介绍了IMU预积分的数学原理,包括SO(3)群的概念,以及IMU预积分的测量、噪声传播和偏置更新。通过对角速度和加速度的积分,计算出姿态变化,并探讨了预积分测量的噪声特性。同时,文章讨论了如何通过一阶更新来校正偏置,以提高预积分的精度。

1 SO(3) Group

关于SO(3)的介绍略过,这里只列出几个近似的公式:
Exp(δθ)I+[θ]×(1)
Exp(θ+δθ)Exp(θ)Exp(Jr(θ)δθ)(2)
Exp(θ)Exp(δθ)Exp(θ+J1r(θ)δθ)(3)

Exp(δϕ)Exp(δθ)Exp(δϕ+J1r(δϕ)δθ)Exp(δϕ+δθ)(4)

以及Adjoint表示:

Exp(θ)R=RExp(RTθ)(5)

2 IMU Preintegration measurements

2.1 Integration measurements

给定初值,在i和j时刻对imu的角速度和加速度进行积分,可以计算j时刻相对于i时刻的姿态:
Rjvjpj=Rik=ij1Exp((w̃ kbgiηgdk)Δt)=vi+k=ij1(g+Rk(ã kbaiηadk))Δt=pi+k=ij1vkΔt+12k=ij1(g+Rk(ã kbaiηadk))Δt2(6)

2.2 Preintegration measurements

在preintegration理论中需要将初值(Ri,vi,pi)和常数项(包含重力g的项)分离出来:
ΔRijΔvijΔpij=RTiRj=k=ij1Exp((w̃ kbgiηgdk)Δt)=RTi(vjvigΔt(ji))=k=ij1ΔRik(ã kbaiηadk)Δt=RTi(pjpiviΔt(ji)12gΔt2(ji)2)=k=ij1[ΔvikΔt+12ΔRik(ã kbaiηadk)Δt2](7)

ΔRij,Δvij,Δpij即为preintegration measurements,即不考虑初值以及重力加速度项的相对测量。注意到这些项包含有噪声η,我们也需要将它们分离出来。在分离的过程中发现preintegration measurements是近似服从高斯分布的,即:
ΔR̃ ijΔṽ ijΔp̃ ijΔRijExp(δϕij)Δvij+δvijΔpij+δpij(8)

其中ΔR̃ ij,Δṽ ij,Δp̃ ij为我们可以计算的测量值,不包含噪声η
ΔR̃ ijΔṽ ijΔp̃ ij=k=ij1Exp((w̃ kbgi)Δt)=k=ij1ΔR̃ ik(ã kbai)Δt=k=ij1[Δṽ ikΔt+12ΔR̃ ik(ã kbai)Δt2](9)

定义ηΔij=[δϕTij,δpTij,δvTij]T9×1(09×1,ij)为noise preintegration vector,它们是和噪声η相关的项。这里不会对ηΔij进行求解,因为事实上我们仅需要其递推形式。

2.3 Iterative preintegration measurements

首先给出包含噪声的递推公式:
ΔRi,k+1Δvi,k+1Δpi,k+1=ΔRi,kExp((w̃ kbgiηgdk)Δt)=Δvi,k+ΔRi,k(ã kbaiηadk)Δt=Δpi,k+Δvi,kΔt+12ΔRi,k(ã kbaiηadk)Δt2(10)

接着给出不含噪声的递推公式:
ΔR̃ i,k+1Δṽ i,k+1Δp̃ i,k+1=ΔR̃ i,kExp((w̃ kb

Abstract: Current approaches for visual-inertial odometry (VIO) are able to attain highly accurate state estimation via nonlinear optimization. However, real-time optimization quickly becomes infeasible as the trajectory grows over time; this problem is further emphasized by the fact that inertial measurements come at high rate, hence leading to fast growth of the number of variables in the optimization. In this paper, we address this issue by preintegrating inertial measurements between selected keyframes into single relative motion constraints. Our first contribution is a preintegration theory that properly addresses the manifold structure of the rotation group. We formally discuss the generative measurement model as well as the nature of the rotation noise and derive the expression for the maximum a posteriori state estimator. Our theoretical development enables the computation of all necessary Jacobians for the optimization and a-posteriori bias correction in analytic form. The second contribution is to show that the preintegrated IMU model can be seamlessly integrated into a visual-inertial pipeline under the unifying framework of factor graphs. This enables the application of incremental-smoothing algorithms and the use of a structureless model for visual measurements, which avoids optimizing over the 3D points, further accelerating the computation. We perform an extensive evaluation of our monocular VIO pipeline on real and simulated datasets. The results confirm that our modelling effort leads to accurate state estimation in real-time, outperforming state-of-the-art approaches.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值