SQL优化(续)

1.in 和 not in 要慎用,否则会导致全表扫描,如: select id from t where num in(1,2,3)
    对于连续的数值,能用 between 就不要用 in :select id from t where num between 1 and 3

2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

3.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,select id from t where num is null;可以在 num 上设置默认值 0,确保表中 num 列没有 null 值,然后这样查询: select id from t where num=0。尽量把所有的列设置为NOT NULL,如果要保存NULL,手动去设置它,而不是把它设为默认值。

4.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

5.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

6.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。

7.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

8.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

9.定期分析表、检查表、优化表
分析表的语法:ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tb1_name[, tbl_name]...
       例如:analyze table table_name
       以上语句用于分析和存储表的关键字分布,分析的结果将可以使得系统得到准确的统计信息,使得SQL能够生成正确的执行计划。如果用户感觉实际执行计 划并不是预期的执行计划,执行一次分析表可能会解决问题。在分析期间,使用一个读取锁定对表进行锁定。这对于MyISAM,DBD和InnoDB表有作用。

检查表的语法:CHECK TABLE tb1_name[,tbl_name]...[option]...option = {QUICK | FAST | MEDIUM | EXTENDED | CHANGED}
       检查表的作用是检查一个或多个表是否有错误,CHECK TABLE 对MyISAM 和 InnoDB表有作用,对于MyISAM表,关键字统计数据被更新CHECK TABLE 也可以检查视图是否有错误,比如在视图定义中被引用的表不存在。

优化表的语法:OPTIMIZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tb1_name [,tbl_name]...
       例如: optimize table table_name
       如果删除了表的一大部分,或者如果已经对含有可变长度行的表(含有 VARCHAR、BLOB或TEXT列的表)进行更多更改,则应使用OPTIMIZE TABLE命令来进行表优化。这个命令可以将表中的空间碎片进行合并,并且可以消除由于删除或者更新造成的空间浪费,但OPTIMIZE TABLE 命令只对MyISAM、 BDB 和InnoDB表起作用。

    

注意: analyze、check、optimize执行期间将对表进行锁定,因此一定注意要在MySQL数据库不繁忙的时候执行相关的操作。

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值