1994年以前的speech coder的小结

本文介绍1994年前语音编码相关内容。先对语音质量分类,阐述客观和主观测量方法。接着介绍波形编码器,包括标量和矢量量化、子带和变换编码器等,提及多种编码算法及相关标准。还涉及基于正弦分析 - 合成模型的语音编码、声码器方法等。
部署运行你感兴趣的模型镜像

-------------------------------Speech coding before 1994----------------------------------------


Speech quality is claissified into four general categories:
1)broadcast--above 64 kbits/s
2)Toll or network (200-3200Hz)--above 16 kbits/s
3)Communication--above 4.0 kbits/s
4)Synthetic--below 4.0 kbits/s

Object Mesurement:
1)signal-to-noise (SNR)
2)segmental SNR (SEGSNR)
3)articulation index
4)log spectral distance
5)the Euclidean distance

Subjective Mesurement:
Diagnostic Rhyme Test(DRT)--an intelligiblity measure where the subject's task is to recognize one of two possible words in a

set of rhyming pairs.
Diagnostic Aceptablitity Mesure(DAM)--based on results of test methods evaluating the quality of a communication system based

on teh acceptableility of speech as perceived by trained normative listener.
Mean Opinion Score(MOS)--involves 12 to 24 listeners who are instructed to rate phonetically balanced records according to a

five-level quality scale.


Waveform coders:
A.Scalar and vector quantization
1)Scalar Quantization
pulse-Code Modulation(PCM)--a memoryless proces that quantizes amplitudes by rounding off each sample to one of a set of

discrete values.
Adaptive PCM(APCM)--uniform quantizer. step size is estimated from past coded speech samples.(A 7-bit log quantizer for

speech achieves the performance of a 12-bit uniform quantizer)
Differential PCM(DPCM)--utilizes the redundancy in the speech waveform by exploiting the correlation between adjacent

samples.(better than PCM for rate at and below 32 kbits/s)
Adatvie DPCM(ADPCM)--the step size in DPCM is adaptive.
Delta Modulation(DM)--a sub-class of DPCM where the difference is encoded only with 1 bit.
Adaptive DM(ADM)-the step size in DM is adaptive.

standards:
G.721 CCITT standard(1988)---ADPCM 32-kbits/s
G.723 ---ADPCM 24 and 40 kbits/s (the performance of ADPCM degrades quickly for rates below 24 kbits/s)

2)vector quantization
--consists of an N-dimensional quantizer and a codebook. The incoming data are formed into a N-dimesional vector, then is mapped by quantizer to an entry in the codebook.
Full searched (F-VQ)--the codebook is fully searched for each incoming.
Tree-structured vector quantizer--the codebook is searched in "tree" way.(a degradation fo 1 db in the SNR compared with F- VQ)
Mulistep VQ--consist of a cascade of two or more quantizers, each one encoding the error or residual of the previous  quantizer.(1 dB better in the SNR compared to F-VQ)
LBG--an iterative codebook design algorithm:inital guess for the codebook and then interative improvement by using a large

number of training vectors.
Gain/Shape VQ(GS-VQ)--normalizing the vectors fo the codebook and encoding the gain separately.
(0.7 db improvement compared to the F-VQ)
Adaptive codebooks(A-VQ)--the codebook is adaptive forward or backword.

B.sub-Band and Transform Coders
    1)Sub-Band Coders(SBC)--the signal band is divided into frequency sub-bands using a bandk of bandpass filters.
standard:
AT&T voice store-and-forward standard--used for voice storage at 16 or 24 kbits/s and consits of five-band nonuniform tree-

structured QMF bank in conjunction with APCM coders. A silence compression alogrithm is also part of the standard.
CCITT G.772--for 7-kHz audio at 64 kbits/s for ISDN teleconferencing, based on two-band sub-band/ADPCM coder. Low frequency

suband is quantized at 48 kbits/s while the high-frequency sub-band is coded at 16 kbits/s.

    2)Transform Coders(TC)--the transform components of a unitary transform are quantized at the transmitter and decoded and

inverse-transformed at the receiver. The bit-rate reduction lies in the fact that unitary transform tend to generate near-

uncorrelated transform components which can be coded independently.
several siscrete transform:
Discrete Cosine Transform(DCT) (near optimal)
Discrete Fourier Transform(DFT)
Walsh-Hadamard Transform(WHT)
kARHUNEN-lOEVE tRANSFORM(kLT) (optimal)
Adaptive transform coder(ATC)--encodeds the transform components using adaptive quantization and bit assignment rules.


//from here, I omit many examples....

Speech coding using sinusoidal analysis-synthesis models--relies on sinusoidal representations of the speech waveform.
A. speech Analysis-synthesis using the short-Time Fourier Transform
Time-varying spectral analysis can be performed using the short-time Fourier transform(STFT).

B.Sinusoidal Transform Coding(STC)--using unitary sinusoidal transforms implies that speech waveform si represented by a set of narrowband functions.(based on the fact that voiced speech is typically highly periodic and hence it can be represented by a constraned set of sinusoids)

C.The Multiband Excitation Coder(MBE)--relies on a model that treats the short-time speech spectrum as the product of an  excitation spectrum and a vocal tract envelope
improved Multiband Excitation Coder(IMBE)--quantizeing the MBE model parameters.

standard:
Australian mobile staellite standard(AUSSAT) and the International Mobile Satellite(Inmarsat_M) employ IMBE that operates at 6.4 kbits/s

Vododer Methods.
--speech-specific coder.The performance of vocoders generally degrades for nonspeech signals. Rely on speech-specific

analysis-synthesis which is mostly based on the source-system model.

A.The Channel and the Formant Vocoder
relies on representing the speech spectrum as the product of vocal tract and excitation spectra.

B.Homomorphic Vocoders--vocal tract and the ecxitation log-magnutude spectra can be combined additively to produce the speech log-magnutude spectrum.

C. Linear-Predictive Vocoders(LPC)--predict the sample by uisng a linear comibation of last samples.
    a)The calssical two-state excitation model
standard:
LPC-10--usins a 10th-order predictor to estimate the vocal-tract parameters.

    b)mixed excitation model
LPC combined  with others..?

   C)Residual excited linear prediction(RELP)--encodes the residual of LPC, and allot more bits for the perceptually important  components.(the quality of RELP coder at rates above 4.8 kbits/s is higher than the analogous two stated LPC)

Analysis-by Synthesis Linear Predictive Coders

--system parameters are determined by linear prediction and the excitation sequence is determinded by closed-loop or analysis-by-synthesis optimaization

A.Multipulse-Excited Linear Prediction(MPLP)--forms an excitation sequence which consists of multiple nonuniformly spaced pulses. Both amplitude and locations of the pluses are determined one pluse at a time such that the weighted mean squared error is minimized.(produced good quality speech at rates as low as 10 kbits/s)

B.Regular Pulse Excitation Coder(RPE)--the pulses in the RPE coder are uniformly spaced and therefor their position are determined by specifying the location k of the first pulse within the frame and the spacing between nonzero pulse.

C.Code Excited Linear Prediction(CELP)--encodes the excitation using a codebook of Guassian sequences. THe book contains 1024 vectors and each vector si 40 sampels(5 ms) long. A gain factor scales the excitation vector and the excitation samples are  filter by the long- and short-term synthesis filters. The optimum vecotor is selected such that the perceptually weighted MSE  is minimized.


 

您可能感兴趣的与本文相关的镜像

Seed-Coder-8B-Base

Seed-Coder-8B-Base

文本生成
Seed-Coder

Seed-Coder是一个功能强大、透明、参数高效的 8B 级开源代码模型系列,包括基础变体、指导变体和推理变体,由字节团队开源

内容概要:本文是一篇关于使用RandLANet模型对SensatUrban数据集进行点云语义分割的实战教程,系统介绍了从环境搭建、数据准备、模型训练与测试到精度评估的完整流程。文章详细说明了在Ubuntu系统下配置TensorFlow 2.2、CUDA及cuDNN等深度学习环境的方法,并指导用户下载和预处理SensatUrban数据集。随后,逐步讲解RandLANet代码的获取与运行方式,包括训练、测试命令的执行与参数含义,以及如何监控训练过程中的关键指标。最后,教程涵盖测试结果分析、向官方平台提交结果、解读评估报告及可视化效果等内容,并针对常见问题提供解决方案。; 适合人群:具备一定深度学习基础,熟悉Python编程和深度学习框架,从事计算机视觉或三维点云相关研究的学生、研究人员及工程师;适合希望动手实践点云语义分割项目的初学者与进阶者。; 使用场景及目标:①掌握RandLANet网络结构及其在点云语义分割任务中的应用;②学会完整部署一个点云分割项目,包括数据处理、模型训练、测试与性能评估;③为参与相关竞赛或科研项目提供技术支撑。; 阅读建议:建议读者结合提供的代码链接和密码访问完整资料,在本地或云端环境中边操作边学习,重点关注数据格式要求与训练参数设置,遇到问题时参考“常见问题与解决技巧”部分及时排查。
内容概要:本文详细介绍了三相异步电机SVPWM-DTC(空间矢量脉宽调制-直接转矩控制)的Simulink仿真实现方法,结合DTC响应快与SVPWM谐波小的优点,构建高性能电机控制系统。文章系统阐述了控制原理,包括定子磁链观测、转矩与磁链误差滞环比较、扇区判断及电压矢量选择,并通过SVPWM技术生成固定频率PWM信号,提升系统稳态性能。同时提供了完整的Simulink建模流程,涵盖电机本体、磁链观测器、误差比较、矢量选择、SVPWM调制、逆变器驱动等模块的搭建与参数设置,给出了仿真调试要点与预期结果,如电流正弦性、转矩响应快、磁链轨迹趋圆等,并提出了模型优化与扩展方向,如改进观测器、自适应滞环、弱磁控制和转速闭环等。; 适合人群:电气工程、自动化及相关专业本科生、研究生,从事电机控制算法开发的工程师,具备一定MATLAB/Simulink和电机控制理论基础的技术人员。; 使用场景及目标:①掌握SVPWM-DTC控制策略的核心原理与实现方式;②在Simulink中独立完成三相异步电机高性能控制系统的建模与仿真;③通过仿真验证控制算法有效性,为实际工程应用提供设计依据。; 阅读建议:学习过程中应结合文中提供的电机参数和模块配置逐步搭建模型,重点关注磁链观测、矢量选择表和SVPWM调制的实现细节,仿真时注意滞环宽度与开关频率的调试,建议配合MATLAB官方工具箱文档进行参数校准与结果分析。
已经博主授权,源码转载自 https://pan.quark.cn/s/bf1e0d5b9490 本文重点阐述了Vue2.0多Tab切换组件的封装实践,详细说明了通过封装Tab切换组件达成多Tab切换功能,从而满足日常应用需求。 知识点1:Vue2.0多Tab切换组件的封装* 借助封装Tab切换组件,达成多Tab切换功能* 支持tab切换、tab定位、tab自动化仿React多Tab实现知识点2:TabItems组件的应用* 在index.vue文件中应用TabItems组件,借助name属性设定tab的标题* 通过:isContTab属性来设定tab的内容* 能够采用子组件作为tab的内容知识点3:TabItems组件的样式* 借助index.less文件来设定TabItems组件的样式* 设定tab的标题样式、背景色彩、边框样式等* 使用animation达成tab的切换动画知识点4:Vue2.0多Tab切换组件的构建* 借助运用Vue2.0框架,达成多Tab切换组件的封装* 使用Vue2.0的组件化理念,达成TabItems组件的封装* 通过运用Vue2.0的指令和绑定机制,达成tab的切换功能知识点5:Vue2.0多Tab切换组件的优势* 达成多Tab切换功能,满足日常应用需求* 支持tab切换、tab定位、tab自动化仿React多Tab实现* 能够满足多样的业务需求,具备良好的扩展性知识点6:Vue2.0多Tab切换组件的应用场景* 能够应用于多样的业务场景,例如:管理系统、电商平台、社交媒体等* 能够满足不同的业务需求,例如:多Tab切换、数据展示、交互式操作等* 能够与其它Vue2.0组件结合运用,达成复杂的业务逻辑Vue2.0多Tab切换组件的封装实例提供了...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值