Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., 0
1 2 4 5 6 7
might become 4
5 6 7 0 1 2
).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
class Solution {
public:
int search(int A[], int n, int target) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if(n == 0) return -1;
//先二分找到分界位置
int low = 0,high = n-1,mid;
while(low != high)
{
mid = (low + high)/2;
if(A[mid] == target) return mid;
if(A[mid] < A[0]) {
high = mid;
}else if(A[mid] > A[0]){
low = mid;
}
if(mid == (low + high)/2) break;
}
//再二分找到这个元素
if(A[0] == target) return 0;
else if(A[0] < target) low = 0;
else {
high = n-1;
low++;
}
while(low <= high)
{
int mid = (low + high)/2;
if(A[mid] < target) {
low = mid;
}else if(A[mid] > target){
high = mid;
}else return mid;
if(mid == high && A[high] > target) high--;
else if(mid == low && A[low] <target) low++;
else if(mid == high || mid == low) break;
}
return -1;
}
};
32 milli secs
http://discuss.leetcode.com/questions/17/search-in-rotated-sorted-array
思路二:事实上,并不需要找到pivot位置就可以。以题目中的例子4 5 6 7 0 1 2举例。我们可以找到中间位置的元素7,与两边相比较,如果left_most < 7,可以知道7左边的元素是顺序的,那么如果target位于这个区间,就可以二分查找;如果不位于这个区间,相当于在7右边的部分重复这个过程。如果left_most > 7,则右半边是顺序的,如果target位于区间,可以二分,如果不在区间,就在7左半边重复过程。因为每次搜索范围减半,时间复杂度为O(lgn)。
代码如下:
class Solution {
public:
int search(int A[], int n, int target) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int low = 0,high = n-1;
while(low <= high)
{
int mid = (low + high)/2;
if(A[mid] == target) return mid;
if(A[mid] >= A[low]){
if(target >= A[low] && target <= A[mid]) high = mid;
else low = mid + 1;
}else{
if(target <= A[high] && target >= A[mid]) low = mid;
else high = mid -1;
}
}
return -1;
}
};
32 milli secs