Segment Tree, Interval Tree,Range Tree and Binary Indexed Tree

本文对比了段树、区间树、范围树及二进制索引树等数据结构在不同场景下的应用,包括一维和多维情况下的预处理时间、查询时间和空间消耗。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

All these data structures are used for solving different problems:

  • Segment tree stores intervals, and optimized for "which of these intervals contains a given point" queries.
  • Interval tree stores intervals as well, but optimized for "which of these intervals overlap with a given interval" queries. It can also be used for point queries - similar to segment tree.
  • Range tree stores points, and optimized for "which points fall within a given interval" queries.
  • http://en.wikipedia.org/wiki/Range_tree
  • Binary indexed tree stores items-count per index, and optimized for "how many items are there between index m and n" queries.

Performance / Space consumption for one dimension:

  • Segment tree - O(n logn) preprocessing time, O(k+logn) query time, O(n logn) space
  • Interval tree - O(n logn) preprocessing time, O(k+logn) query time, O(n) space
  • Range tree - O(n logn) preprocessing time, O(k+logn) query time, O(n) space
  • Binary Indexed tree - O(n logn) preprocessing time, O(logn) query time, O(n) space

(k is the number of reported results).

All data structures can be dynamic, in the sense that the usage scenario includes both data changes and queries:

  • Segment tree - interval can be added/deleted in O(logn) time (see here)
  • Interval tree - interval can be added/deleted in O(logn) time
  • Range tree - new points can be added/deleted in O(logn) time (see here)
  • Binary Indexed tree - the items-count per index can be increased in O(logn) time

Higher dimensions (d>1):

  • Segment tree - O(n(logn)^d) preprocessing time, O(k+(logn)^d) query time, O(n(logn)^(d-1)) space
  • Interval tree - O(n logn) preprocessing time, O(k+(logn)^d) query time, O(n logn) space
  • Range tree - O(n(logn)^d) preprocessing time, O(k+(logn)^d) query time, O(n(logn)^(d-1))) space
  • Binary Indexed tree - O(n(logn)^d) preprocessing time, O((logn)^d) query time, O(n(logn)^d) space
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值