1、使用朴素贝叶斯进行一个文本的分类。假定单词出现之间没有影响(实际不可能没有影响,hhh),然后通过条件概率的算式来进行计算、判断分类
# -*- coding: UTF-8 -*-
import numpy as np
from functools import reduce
# 创建实验样本
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], #切分的词条
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #类别标签向量,1代表侮辱性词汇,0代表不是
return postingList,classVec
# 将切分的实验样本词条整理成不重复的词条列表,也就是词汇表
def createVocabList(dataSet):
vocabSet = set([]) #创建一个空的不重复列表
for document in dataSet:
vocabSet = vocabSet | set(document) #取并集
return list(vocabSet)
# 根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0] * len(vocabList) #创建一个其中所含元素都为0的向量
for word in inputSet: #遍历每个词条
if word in vocabList: #如果词条存在于词汇表中,则置1
returnVec[vocabList.index(word)] = 1
else: print("the word: %s is not in my Vocabulary!" % word)
return returnVec #返回文档向量
# 朴素贝叶斯分类器训练函数
def trainNB0(trainMatrix,trainCategory):
numTrainDocs = len(trainMatrix) #计算训练的文档数目
numWords = len(trainMatrix[0]) #计算每篇文档的词条数
pAbusive = sum(trainCategory)/float(numTrainDocs) #文档属于侮辱类的概率
p0Num = np.zeros(numWords); p1Num = np.zeros(numWords) #创建numpy.zeros数组,
p0Denom = 0.0; p1Denom = 0.0 #分母初始化为0.0
for i in range(numTrainDocs):
if trainCategory[i] == 1: #统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i]) ## 该词条的总的词数目 这压样求得每个词条出现的概率 P(w1),P(w2), P(w3)...
else: #统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = p1Num/p1Denom #相除
p0Vect = p0Num/p0Denom
return p0Vect,p1Vect,pAbusive #返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率
# 朴素贝叶斯分类器分类函数
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
# 两个向量相乘,先将两个向量的第一个元素相乘,然后将第2个元素相乘
p1 = reduce(lambda x,y:x*y, vec2Classify * p1Vec) * pClass1
p0 = reduce(lambda x,y:x*y, vec2Classify * p0Vec) * (1.0 - pClass1)
print('p0:',p0)
print('p1:',p1)
if p1 > p0:
return 1
else:
return 0
# 测试朴素贝叶斯分类器
def testingNB():
listOPosts,listClasses = loadDataSet() #创建实验样本
myVocabList = createVocabList(listOPosts) #创建词汇表
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc)) #将实验样本向量化
p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses)) #训练朴素贝叶斯分类器
testEntry = ['love', 'my', 'dalmation'] #测试样本1
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry)) #测试样本向量化
if classifyNB(thisDoc,p0V,p1V,pAb):
print(testEntry,'属于侮辱类') #执行分类并打印分类结果
else:
print(testEntry,'属于非侮辱类') #执行分类并打印分类结果
testEntry = ['stupid', 'garbage'] #测试样本2
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry)) #测试样本向量化
if classifyNB(thisDoc,p0V,p1V,pAb):
print(testEntry,'属于侮辱类') #执行分类并打印分类结果
else:
print(testEntry,'属于非侮辱类') #执行分类并打印分类结果
if __name__ == '__main__':
testingNB()
前面几个算法学的也都不怎么扎实,学慢点,慢慢看,先基本过一遍,后面结合其他书,再专门写算法数学公式的以及算法的应用。