ML_05bayes

本文档展示了如何使用Python实现朴素贝叶斯文本分类器。首先,通过`loadDataSet`函数创建了一个实验样本,接着创建词汇表,并将样本向量化。之后,利用`trainNB0`训练分类器,计算侮辱类和非侮辱类文档的条件概率。最后,`classifyNB`函数用于分类新的文本,测试样本表明该分类器能够正确识别侮辱性和非侮辱性词汇。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、使用朴素贝叶斯进行一个文本的分类。假定单词出现之间没有影响(实际不可能没有影响,hhh),然后通过条件概率的算式来进行计算、判断分类
 

# -*- coding: UTF-8 -*-
import numpy as np
from functools import reduce

# 创建实验样本
def loadDataSet():
	postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],				#切分的词条
				['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
				['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
				['stop', 'posting', 'stupid', 'worthless', 'garbage'],
				['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
				['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
	classVec = [0,1,0,1,0,1]   																#类别标签向量,1代表侮辱性词汇,0代表不是
	return postingList,classVec

# 将切分的实验样本词条整理成不重复的词条列表,也就是词汇表
def createVocabList(dataSet):
	vocabSet = set([])  					#创建一个空的不重复列表
	for document in dataSet:
		vocabSet = vocabSet | set(document) #取并集
	return list(vocabSet)

# 根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0
def setOfWords2Vec(vocabList, inputSet):
	returnVec = [0] * len(vocabList)									#创建一个其中所含元素都为0的向量
	for word in inputSet:												#遍历每个词条
		if word in vocabList:											#如果词条存在于词汇表中,则置1
			returnVec[vocabList.index(word)] = 1
		else: print("the word: %s is not in my Vocabulary!" % word)
	return returnVec													#返回文档向量

# 朴素贝叶斯分类器训练函数
def trainNB0(trainMatrix,trainCategory):
	numTrainDocs = len(trainMatrix)							#计算训练的文档数目
	numWords = len(trainMatrix[0])							#计算每篇文档的词条数
	pAbusive = sum(trainCategory)/float(numTrainDocs)		#文档属于侮辱类的概率
	p0Num = np.zeros(numWords); p1Num = np.zeros(numWords)	#创建numpy.zeros数组,
	p0Denom = 0.0; p1Denom = 0.0                        	#分母初始化为0.0
	for i in range(numTrainDocs):
		if trainCategory[i] == 1:							#统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
			p1Num += trainMatrix[i]
			p1Denom += sum(trainMatrix[i])                  ## 该词条的总的词数目   这压样求得每个词条出现的概率 P(w1),P(w2), P(w3)...
		else:												#统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
			p0Num += trainMatrix[i]
			p0Denom += sum(trainMatrix[i])
	p1Vect = p1Num/p1Denom									#相除
	p0Vect = p0Num/p0Denom
	return p0Vect,p1Vect,pAbusive							#返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率

# 朴素贝叶斯分类器分类函数
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    # 两个向量相乘,先将两个向量的第一个元素相乘,然后将第2个元素相乘
	p1 = reduce(lambda x,y:x*y, vec2Classify * p1Vec) * pClass1
	p0 = reduce(lambda x,y:x*y, vec2Classify * p0Vec) * (1.0 - pClass1)
	print('p0:',p0)
	print('p1:',p1)
	if p1 > p0:
		return 1
	else:
		return 0

# 测试朴素贝叶斯分类器
def testingNB():
	listOPosts,listClasses = loadDataSet()									#创建实验样本
	myVocabList = createVocabList(listOPosts)								#创建词汇表
	trainMat=[]
	for postinDoc in listOPosts:
		trainMat.append(setOfWords2Vec(myVocabList, postinDoc))				#将实验样本向量化
	p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses))		#训练朴素贝叶斯分类器
	testEntry = ['love', 'my', 'dalmation']									#测试样本1
	thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))				#测试样本向量化
	if classifyNB(thisDoc,p0V,p1V,pAb):
		print(testEntry,'属于侮辱类')										#执行分类并打印分类结果
	else:
		print(testEntry,'属于非侮辱类')										#执行分类并打印分类结果
	testEntry = ['stupid', 'garbage']										#测试样本2

	thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))				#测试样本向量化
	if classifyNB(thisDoc,p0V,p1V,pAb):
		print(testEntry,'属于侮辱类')										#执行分类并打印分类结果
	else:
		print(testEntry,'属于非侮辱类')										#执行分类并打印分类结果

if __name__ == '__main__':
	testingNB()

前面几个算法学的也都不怎么扎实,学慢点,慢慢看,先基本过一遍,后面结合其他书,再专门写算法数学公式的以及算法的应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值