/*
一、说明
WeakPtr,可用来在不同线程间传递对象。
二、相关类
Flag : public RefCountedThreadSafe<Flag>
-->标志类,自身是有"线程安全引用计数"的。
用来标志WeakPtr所指向的对象是否还可用IsValid()。
WeakReference
-->含有一个scoped_refptr<const Flag> flag,对应Flag的一个引用
WeakPtrBase
-->作为WeakPtr的父类存在,它体内含有WeakReference ref_,
实际上就是为了让WeakPtr体内包含一个WeakReference对象,
更进一步,就是为了让WeakPtr对象拥有一个Flag对象引用。
WeakReferenceOwner
-->负责new出Flag对象,保证所有从本类请求的Flag对象都是同
一个,而同一个Flag对象代表了同一个object指针
WeakPtr : public WeakPtrBase
-->这样的话,WeakPtr也就有了WeakReference对象,进而有了一个
Flag对象。WeakPtr析构时,就引起Flag的引用-1
WeakPtrFactory
-->WeakPtr的生产工厂,体内有一个WeakReferenceOwner,通过它
来生产WeakPtr。
三、原理
对象要跨线程,比如说线程1有一个对象A通过指针将对象传递给线程2,
线程2怕的是在用的时候,那个对象A被释放了。而如果能有一个地方查到
此对象是否还存在的话,跨线程就ok了。
假设有对象指针T
Flag对象就是用来标志那个对象T是否还存在的标志。
WeakReferenceOwner只能产生针对T的WeakReference(同一个Flag构成的)
由于Flag是new出来的,它的析构不是由外力决定的,而是由它被引用的情况
决定的,因为它是"可引用计数"的。引用计数归0后自然就是释放内存。所以
Flag寿命比object长一些,与最后一个WeakPtr一起结束生命。
每个WeakReference是Flag的一份引用,而每个WeakPtr中有一个WeakReference
当WeakPtr析构时,WeakReference就析构了,最终引起Flag引用数量-=1,当引用
数量==0时,Flag析构,也就是说在所有WeakPtr析构前,Flag是不会析构的,这
个对象可被任何关于T的WeakPtr用来查询,T是否有效
构建过程是同一个WeakReferenceOwner用同一个Flag来构建WeakPtr的,所以所
有WeakPtr都指向同一个对象。
*/
#ifndef BASE_MEMORY_WEAK_PTR_H_
#define BASE_MEMORY_WEAK_PTR_H_
namespace base {
template <typename T> class SupportsWeakPtr;
template <typename T> class WeakPtr;
namespace internal {
class Flag : public RefCountedThreadSafe<Flag> {
public:
Flag();
void Invalidate();// is_valid_ = false;
bool IsValid() const;//是否可用
void DetachFromThread() { thread_checker_.DetachFromThread(); }
private:
friend class base::RefCountedThreadSafe<Flag>;
~Flag();
ThreadChecker thread_checker_;
bool is_valid_;
};//Flag
class BASE_EXPORT WeakReference {
public:
WeakReference();
explicit WeakReference(const Flag* flag);
~WeakReference();
bool is_valid() const;
private:
scoped_refptr<const Flag> flag_;//scoped
};//WeakReference
class BASE_EXPORT WeakReferenceOwner {
public:
WeakReferenceOwner();
~WeakReferenceOwner();
WeakReference GetRef() const;//只返回唯一Flag
bool HasRefs() const {
return flag_.get() && !flag_->HasOneRef();
}
void Invalidate();//flag_->Invalidate(),flag=null
// Indicates that this object will be used on another thread from now on.
//valid_thread_id_ = kInvalidThreadId=0;
void DetachFromThread() {
if (flag_) flag_->DetachFromThread();
}
private:
mutable scoped_refptr<WeakReference::Flag> flag_;
};
// This class simplifies the implementation of WeakPtr's type conversion
// constructor by avoiding the need for a public accessor for ref_. A
// WeakPtr<T> cannot access the private members of WeakPtr<U>, so this
// base class gives us a way to access ref_ in a protected fashion.
class BASE_EXPORT WeakPtrBase {//WeakPtr父类,封装WeakReference
public:
WeakPtrBase();
~WeakPtrBase();
protected:
explicit WeakPtrBase(const WeakReference& ref);
WeakReference ref_;
};
// This class provides a common implementation of common functions that would
// otherwise get instantiated separately for each distinct instantiation of
// SupportsWeakPtr<>.
class SupportsWeakPtrBase {
public:
// A safe static downcast of a WeakPtr<Base> to WeakPtr<Derived>. This
// conversion will only compile if there is exists a Base which inherits
// from SupportsWeakPtr<Base>. See base::AsWeakPtr() below for a helper
// function that makes calling this easier.
// WeakPtr<Base> WeakPtr<Derived>间转换
// 父类继承了SupportsWeakPtr,子类继承了父类,见下面helper函数
template<typename Derived>
static WeakPtr<Derived> StaticAsWeakPtr(Derived* t) {
typedef is_convertible<Derived, internal::SupportsWeakPtrBase&> convertible;
COMPILE_ASSERT(convertible::value,AsWeakPtr_argument_inherits_from_SupportsWeakPtr);
//只提供了一个模板参数,另一个没有,需要编译器自己推导
return AsWeakPtrImpl<Derived>(t, *t);
}
private:
// This template function uses type inference to find a Base of Derived
// which is an instance of SupportsWeakPtr<Base>. We can then safely
// static_cast the Base* to a Derived*.
// 类型推导,找出父类子所含有的ptr,然后将其转成子类的ptr,然后再封装成
// WeakPtr返回回去。
//用参数约束出了父类的名字
template <typename Derived, typename Base>
static WeakPtr<Derived> AsWeakPtrImpl(Derived* t, const SupportsWeakPtr<Base>&)
{
WeakPtr<Base> ptr = t->Base::AsWeakPtr();
return WeakPtr<Derived>(ptr.ref_, static_cast<Derived*>(ptr.ptr_));
}
};
} // namespace internal
template <typename T> class WeakPtrFactory;
// The WeakPtr class holds a weak reference to |T*|.
//
// This class is designed to be used like a normal pointer. You should always
// null-test an object of this class before using it or invoking a method that
// may result in the underlying object being destroyed.
//
// EXAMPLE:
//
// class Foo { ... };
// WeakPtr<Foo> foo;
// if (foo)
// foo->method();
//
template <typename T>
class WeakPtr : public internal::WeakPtrBase {
public:
WeakPtr() : ptr_(NULL) {
}
// Allow conversion from U to T provided U "is a" T.
template <typename U>
WeakPtr(const WeakPtr<U>& other) : WeakPtrBase(other), ptr_(other.get()) {
}
T* get() const { return ref_.is_valid() ? ptr_ : NULL; }
operator T*() const { return get(); }
T& operator*() const {
DCHECK(get() != NULL);
return *get();
}
T* operator->() const {
DCHECK(get() != NULL);
return get();
}
void reset() {
ref_ = internal::WeakReference();
ptr_ = NULL;
}
private:
friend class internal::SupportsWeakPtrBase;
friend class SupportsWeakPtr<T>;
friend class WeakPtrFactory<T>;
WeakPtr(const internal::WeakReference& ref, T* ptr)
: WeakPtrBase(ref),
ptr_(ptr) {
}
// This pointer is only valid when ref_.is_valid() is true. Otherwise, its
// value is undefined (as opposed to NULL).
T* ptr_;
};
// A class may extend from SupportsWeakPtr to expose weak pointers to itself.
// This is useful in cases where you want others to be able to get a weak
// pointer to your class. It also has the property that you don't need to
// initialize it from your constructor.
template <class T>
class SupportsWeakPtr : public internal::SupportsWeakPtrBase {
public:
SupportsWeakPtr() {}
WeakPtr<T> AsWeakPtr() {
return WeakPtr<T>(weak_reference_owner_.GetRef(), static_cast<T*>(this));
}
// Indicates that this object will be used on another thread from now on.
void DetachFromThread() {
weak_reference_owner_.DetachFromThread();
}
protected:
~SupportsWeakPtr() {}
private:
internal::WeakReferenceOwner weak_reference_owner_;
DISALLOW_COPY_AND_ASSIGN(SupportsWeakPtr);
};
// Helper function that uses type deduction to safely return a WeakPtr<Derived>
// when Derived doesn't directly extend SupportsWeakPtr<Derived>, instead it
// extends a Base that extends SupportsWeakPtr<Base>.
//
// EXAMPLE:
// class Base : public base::SupportsWeakPtr<Producer> {};
// class Derived : public Base {};
//
// Derived derived;
// base::WeakPtr<Derived> ptr = base::AsWeakPtr(&derived);
//
// Note that the following doesn't work (invalid type conversion) since
// Derived::AsWeakPtr() is WeakPtr<Base> SupportsWeakPtr<Base>::AsWeakPtr(),
// and there's no way to safely cast WeakPtr<Base> to WeakPtr<Derived> at
// the caller.
//
// base::WeakPtr<Derived> ptr = derived.AsWeakPtr(); // Fails.
// 在这种情况下,子类中的AsWeakPtr()函数不是WeakPtr<Derived>类型的,而是
// WeakPtr<Producer> SupportsWeakPtr<Base>::AsWeakPtr()类型的,因为子类中的内
// 容是继承自父类的,所以,不能直接调用那句话。 父子类形成的模板,不再兼容
// 也就是想要WeakPtr<Derived> 而返回的是WeakPtr<Base>
//
// 需要调用internal::SupportsWeakPtrBase::StaticAsWeakPtr<Derived>(t)转换
template <typename Derived>
WeakPtr<Derived> AsWeakPtr(Derived* t) {
return internal::SupportsWeakPtrBase::StaticAsWeakPtr<Derived>(t);
}
// A class may alternatively be composed of a WeakPtrFactory and thereby
// control how it exposes weak pointers to itself. This is helpful if you only
// need weak pointers within the implementation of a class. This class is also
// useful when working with primitive types. For example, you could have a
// WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
// 工厂是对owner是封装
template <class T>
class WeakPtrFactory {
public:
explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {
}
~WeakPtrFactory() {
ptr_ = NULL;
}
WeakPtr<T> GetWeakPtr() {
DCHECK(ptr_);
return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_);
}
// Call this method to invalidate all existing weak pointers.
void InvalidateWeakPtrs() {//让所有弱指针无效
DCHECK(ptr_);
weak_reference_owner_.Invalidate();
}
// Call this method to determine if any weak pointers exist.
bool HasWeakPtrs() const {
DCHECK(ptr_);
return weak_reference_owner_.HasRefs();
}
// Indicates that this object will be used on another thread from now on.
void DetachFromThread() {
DCHECK(ptr_);
weak_reference_owner_.DetachFromThread();
}
private:
internal::WeakReferenceOwner weak_reference_owner_;
T* ptr_;
DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory);
};
} // namespace base
/*
上面提供了两种方法,让一个类可导出WeakPtr指针。一种是将WeakPtrFactory包装到类定义中,
工厂方法,一种是继承SupportsWeakPtr
*/
#endif // BASE_MEMORY_WEAK_PTR_H_
/*
模板在用父子类特化后不再兼容
template <class T>
class WeakPtr{};
template <class T>
class SupportsWeakPtr{
public:
WeakPtr<T> AsWeakPtr() {
return WeakPtr<T>;
}
};
class Base:public SupportsWeakPtr<Base>{};
class Derived:public Base{};
int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])
{
Derived derived;
//error C2440: “初始化”: 无法从“WeakPtr<T>”转换为“WeakPtr<T>”
//WeakPtr<Derived> ptr = derived.AsWeakPtr();
WeakPtr<Base> pb;
WeakPtr<Derived> pd;
// error C2679: 二进制“=”: 没有找到接受“WeakPtr<T>”
//类型的右操作数的运算符(或没有可接受的转换)
//pb=pd;
//error C2440: “初始化”: 无法从“WeakPtr<T> *”转换为“WeakPtr<T> *”
//WeakPtr<Base> *p= new WeakPtr<Derived>;
system("pause");
return 0;
}
*/
WeakPtr 学习
最新推荐文章于 2025-02-08 16:53:20 发布