Always override hashCode when you override equals

Java hashCode 方法最佳实践
本文详细介绍了 Java 中 hashCode 方法的设计原则及其实现建议。主要内容包括:hashCode 的一致性要求、与 equals 方法的关系、如何为不同类型的字段计算哈希值、如何结合这些哈希值以及推荐的实现步骤。

Here is the contract, copied from the Objectspecification [JavaSE6]:
• Whenever it is invoked on the same object more than once during an execution of an application, the hashCodemethod must consistently return the
same integer, provided no information used in equalscomparisons on the
object is modified. This integer need not remain consistent from one execution of an application to another execution of the same application.
• If two objects are equal according to the equals(Object)method, then calling the hashCodemethod on each of the two objects must produce the same
integer result. 

• It is not required that if two objects are unequal according to the equals(Object)method, then calling the hashCodemethod on each of the two objects
must produce distinct integer results. However, the programmer should be
aware that producing distinct integer results for unequal objects may improve
the performance of hash tables.


Here is a recipe.

1.Store some constant nonzero value,say,17,in an int variable called result.

2. For each significant field fin your object (each field taken into account by the equalsmethod, that is), do the following:

  a. Compute an inthash code cfor the field:
i. If the field is a boolean, compute (f?1:0).
ii. If the field is a byte,char, short, or int, compute (int) f.
iii. If the field is a long, compute (int) (f ^ (f >>> 32)).
iv. If the field is a float, compute Float.floatToIntBits(f).
v. If the field is a double, compute Double.doubleToLongBits(f), and
    then hash the resulting longas in step 2.a.iii.
vi. If the field is an object reference and this class’s equals
 method compares the field by recursively invoking equals, recursively invoke hashCodeon the field. If a more complex comparison is required, compute a “canonical representation” for this field and invoke hashCodeon the canonical representation. If the value of the field is null, return 0(or some other constant, but 0is traditional).

vii. If the field is an array, treat it as if each element were a separate field. That is, compute a hash code for each significant element by applying these rules recursively, and combine these values per step 2.b. If every element in an array field is significant, you can use one of the Arrays.hashCodemethods added in release 1.5.

  b. Combine the hash code ccomputed in step 2.a into resultas follows:
result = 31 * result + c;

3. Return result.

4. When you are finished writing the hashCodemethod, ask yourself whether equal instances have equal hash codes. Write unit tests to verify your intuition! If equal instances have unequal hash codes, figure out why and fix the problem.


For example:

// Lazily initialized, cached hashCode
private volatile int hashCode; // (See Item 71)
@Override public int hashCode() {
int result = hashCode;
if (result == 0) {
result = 17;
result = 31 * result + areaCode;
result = 31 * result + prefix;
result = 31 * result + lineNumber;
hashCode = result;
}
return result;
}

跟网型逆变器小干扰稳定性分析与控制策略优化研究(Simulink仿真实现)内容概要:本文围绕跟网型逆变器的小干扰稳定性展开分析,重点研究其在电力系统中的动态响应特性及控制策略优化问题。通过构建基于Simulink的仿真模型,对逆变器在不同工况下的小信号稳定性进行建模与分析,识别系统可能存在的振荡风险,并提出相应的控制优化方法以提升系统稳定性和动态性能。研究内容涵盖数学建模、稳定性判据分析、控制器设计与参数优化,并结合仿真验证所提策略的有效性,为新能源并网系统的稳定运行提供理论支持和技术参考。; 适合人群:具备电力电子、自动控制或电力系统相关背景,熟悉Matlab/Simulink仿真工具,从事新能源并网、微电网或电力系统稳定性研究的研究生、科研人员及工程技术人员。; 使用场景及目标:① 分析跟网型逆变器在弱电网条件下的小干扰稳定性问题;② 设计并优化逆变器外环与内环控制器以提升系统阻尼特性;③ 利用Simulink搭建仿真模型验证理论分析与控制策略的有效性;④ 支持科研论文撰写、课题研究或工程项目中的稳定性评估与改进。; 阅读建议:建议读者结合文中提供的Simulink仿真模型,深入理解状态空间建模、特征值分析及控制器设计过程,重点关注控制参数变化对系统极点分布的影响,并通过动手仿真加深对小干扰稳定性机理的认识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值