Description
Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)
Input
The data set, which is read from a the std input, starts with the tree description, in the form:
nr_of_vertices
vertex:(nr_of_successors) successor1 successor2 ... successorn
...
where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form:
nr_of_pairs
(u v) (x y) ...
The input file contents several data sets (at least one).
Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.
Output
For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times
For example, for the following tree:

Sample Input
5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1 5) (1 4) (4 2)
(2 3)
(1 3) (4 3)
Sample Output
2:1 5:5
Hint
Huge input, scanf is recommended.
Source
1:如果使用离线LCA算法做这道题的话,查询数的最大值要定义为50W!
2:多组输入!
3:需要对根节点进行特判,因为第一个点不一定是根节点!
4:然后一直看大家都说输入有问题,输入直接在括号前面加上一个空格不就直接吸收缓冲区里面的回车了吗。
scanf(" (%d %d)",&x,&y);
5:别忘了清空数组,因为如果你一开始是用单组输入的话,改成组输入的时候确实很容易忘。
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#include<string.h>
#include<string>
using namespace std;
const int maxn=20000;
const int DEG=20;
int head[maxn],tot,top;
int fa[maxn][DEG],depth[maxn];
int number;
bool flag[maxn];
struct Edge
{
int to,next;
} edge[maxn*2];
struct xiao
{
int u,w;
} mapp[maxn];
bool cmp(xiao a,xiao b)
{
return a.u<b.u;
}
void addedge(int u,int v)
{
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
}
void init()
{
number=0;
tot=0;
memset(head,-1,sizeof(head));
memset(flag,false,sizeof(flag));
memset(depth,0,sizeof(depth));
memset(fa,0,sizeof(fa));
}
void debug()
{
cout<<"____5_____"<<endl;
}
void BFS(int root)
{
queue<int>que;
depth[root]=0;
fa[root][0]=root;
que.push(root);
while(!que.empty())
{
int tmp=que.front();
que.pop();
for(int i=1; i<DEG; ++i)
{
fa[tmp][i]=fa[fa[tmp][i-1]][i-1];
}
for(int i=head[tmp]; i!=-1; i=edge[i].next)
{
int v=edge[i].to;
if(v==fa[tmp][0])
continue;
depth[v]=depth[tmp]+1;
fa[v][0]=tmp;
que.push(v);
}
}
}
int LCA(int u,int v)
{
if(depth[u]>depth[v])
{
int x=u;
u=v;
v=x;
}
int hu=depth[u],hv=depth[v];
int tu=u,tv=v;
for(int det=hv-hu,i=0; det; det>>=1,i++)
if(det&1)
tv=fa[tv][i];
if(tu==tv)
return tu;
for(int i=DEG-1; i>=0; --i)
{
if(fa[tu][i]==fa[tv][i])
continue;
tu=fa[tu][i];
tv=fa[tv][i];
}
return fa[tu][0];
}
int main()
{
int n;
while(cin>>n)
{
init();
for(int i=1; i<=n; ++i)
{
int u,x,v;
scanf("%d:(%d)",&u,&x);
for(int k=1; k<=x; ++k)
{
scanf("%d",&v);
addedge(u,v);
addedge(v,u);
flag[v]=true;
}
}
int root;
for(int i=1; i <=n ; ++i)
{
if(!flag[i])
{
root=i;
break;
}
}
BFS(root);
map<int,int>mmp;
int m,x,y;
cin>>m;
while(m--)
{
scanf(" (%d %d)",&x,&y);
int mm=LCA(x,y);
if(mmp[mm]==0)
{
mapp[number++].u=mm;
}
mmp[mm]++;
}
sort(mapp,mapp+number,cmp);
for(int i=0; i<number; ++i)
{
printf("%d:%d\n",mapp[i].u,mmp[mapp[i].u]);
}
}
return 0;
}
本文详细介绍了一种离线LCA算法的实现过程,用于解决给定树结构中多个顶点对的最近公共祖先问题。文章首先介绍了算法的基本概念和输入输出格式,随后通过具体的示例说明了算法的工作原理,并提供了完整的C++代码实现。该算法适用于处理大量查询,能够有效地找到两个节点的最近公共祖先。
639

被折叠的 条评论
为什么被折叠?



