手写识别——Hition大牛的主页上copy过来

本博客提供由Ruslan Salakhutdinov和Geoff Hinton制作的用于在MNIST数据集上训练深度自编码器与分类器的代码。用户可以下载并使用包含4个文件的代码包,通过指定步骤进行操作。代码适用于研究目的,未经充分测试,使用时需自行承担风险。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Training a deep autoencoder or a classifier 
on MNIST digits

Code provided by Ruslan Salakhutdinov and Geoff Hinton 
Permission is granted for anyone to copy, use, modify, or distribute this program and accompanying programs and documents for any purpose, provided this copyright notice is retained and prominently displayed, along with a note saying that the original programs are available from our web page. The programs and documents are distributed without any warranty, express or implied. As the programs were written for research purposes only, they have not been tested to the degree that would be advisable in any important application. All use of these programs is entirely at the user's own risk.

How to make it work:

  1. Create a separate directory and download all these files into the same directory
  2. Download from http://yann.lecun.com/exdb/mnist the following 4 files:
    • train-images-idx3-ubyte.gz
    • train-labels-idx1-ubyte.gz
    • t10k-images-idx3-ubyte.gz
    • t10k-labels-idx1-ubyte.gz
  3. Unzip these 4 files by executing:
    • gunzip train-images-idx3-ubyte.gz
    • gunzip train-labels-idx1-ubyte.gz
    • gunzip t10k-images-idx3-ubyte.gz
    • gunzip t10k-labels-idx1-ubyte.gz
    If unzipping with WinZip, make sure the file names have not been changed by Winzip.
  4. Download Conjugate Gradient code minimize.m
  5. Download Autoencoder_Code.tar which contains 13 files OR 
    download each of the following 13 files separately for training an autoencoder and a classification model:
  6. For training a deep autoencoder run mnistdeepauto.m in matlab.
  7. For training a classification model run mnistclassify.m in matlab.
  8. Make sure you have enough space to store the entire MNIST dataset on your disk. You can also set various parameters in the code, such as maximum number of epochs, learning rates, network architecture, etc.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值