Autobracketing

本文详细介绍了自动曝光补偿(AEB)的概念及其在不同场景下的应用,包括自动曝光、闪光、ISO、白平衡和对焦的自动补偿。通过使用多种参数组合,自动曝光补偿帮助摄影师在复杂光线条件下获得最佳照片效果。

http://en.wikipedia.org/wiki/Autobracketing

Autobracketing

From Wikipedia, the free encyclopedia

Autobracketing is a feature of some more advanced cameras, whether film or digital cameras, particularly single-lens reflex cameras, where the camera will take several successive shots (often three) with slightly different settings. Two modes are used: The images are automatically combined, for example Automatic Exposure Bracketing into one High dynamic range image, or the best-looking separately stored pictures can be picked later from the batch. When the photographer achieves the same result by changing the camera settings between each shot, this is simply called bracketing.

Automatic Exposure Bracketing[edit]

See also:  Exposure bracketing

The most common type of autobracketing is exposure autobracketing (often abbreviated to AEB for Automatic Exposure Bracketing or BR for Bracketing), where the camera is set to capture the same image several times with differentexposure settings, both over-exposed and under-exposed (lighter and darker) compared to the current setting on the camera,[1] which may already include exposure compensation. Depending on the camera, the difference between each of the autobracketed shots could be anywhere from one-quarter[# 1] up to three[# 2] full stops in each direction, in full, half, third or quarter[# 1] stop[# 3] increments, ranging from two up to nine[# 1] shots in series. Sometimes it is possible to either define the order, in which the shots will be taken, or to give an offset[# 1] as a start-point of the bracketing series. More sophisticated equipment allows auto-exposure bracketing to be combined with timer and intervalometer functions as well.[# 1]

Cameras can perform autobracketing by adjusting either the shutter speed (typically in aperture priority mode, sometimes also in manual or program mode) or the aperture setting (typically in shutter priority mode). In programmedexposure mode, many cameras will alter both parameters at the same time. Some cameras allow to swap the parameter used for shifting in manual mode.[# 4] Digital cameras may also alter the ISO setting if auto-ISO is enabled.

Exposure autobracketing is most commonly used with color reversal film (slide film) because of its small exposure latitude compared with print film (which has a wide exposure latitude) and digital cameras (which enable the photographer to review the captured image). In digital photography, autobracketing is convenient to shoot pictures for high dynamic range imaging.[1][2]

Automatic Flash Bracketing[edit]

See also:  Flash bracketing

Automatic flash bracketing (sometimes abbreviated to FBR for Flash Bracketing or FEB for Flash Exposure Bracketing) is typically performed by altering the flash output of a connected dedicated flash accordingly. Using non-dedicated studio flashes, for example on the PC socket, flash bracketing can be carried out by altering the aperture, however, this will also affect ambient light and the depth of field.

If, in manual mode, a camera defaults to alter the shutter speed, it might be necessary to swap the parameters used for shifting in order for the camera to alter the aperture instead.[# 4]

Since the flash may need time to recharge between the shots, some cameras fall back to single-advance drive mode during auto flash bracketing, even if they are otherwise configured for continuous-advance drive.

Automatic ISO Bracketing[edit]

See also:  ISO bracketing

Automatic ISO bracketing simulates exposure bracketing by altering the ISO or signal gain prior to conversion of the image to JPEG or other image file format. The actual exposure values (aperture and shutter speed) are usually kept constant. Auto ISO bracketing is not a common feature of digital cameras.

Automatic White-Balance Bracketing[edit]

Another common form of autobracketing is white balance autobracketing (sometimes abbreviated to WBB for White Balance Bracketing); this applies only to digital cameras, not to film cameras.

This function provides a way of dealing with mixed lighting by having the camera take one shot and process the raw sensor data several times for slightly different white point settings, with both higher and lower color temperatures (bluer and redder) compared to the current setting on the camera. Typically, the amount of offset can be configured.

Since shooting in a camera's RAW format (if supported) the white balance can be arbitrarily changed in postprocessing as well at a later stage, white balance bracketing is particularly useful for reviewing different white balance settings in the field.

Automatic Focus Bracketing[edit]

See also:  Focus bracketing

Smooth Trans Focus function[edit]

See also:  DOF bracketing

A combination of depth-of-field bracketing with multi exposure can be used to emulate the Bokeh-pleasing effect of the Minolta/Sony Smooth Trans Focus 135mm f/2.8 [T4.5] special purpose lens, which accomplishes this by utilizing a concave neutral-gray tinted lens element in the optical path as an apodization filter. This is implemented in the Minolta Maxxum 7's STF function in form of an automatically calculated and pre-compensated seven-fold multi-exposure with DOF bracketing.

Automatic Dual-Bracketing[edit]

A new Automatic Dual-Bracketing is launched in point-and-shoot camera/compact camera which use 2 choices parameters combinations of white balance, exposure, focus, color saturation, and shutter speed and gives multi images.[3][4]

See also[edit]

Bracketing

Notes[edit]

  1. Jump up to:a b c d e The Minolta 7000 and 9000 (1985), in conjunction with the Minolta Program Back Super 70 / 90 (PBS-70/PBS-90) or the 100-Exposure Back EB-90, support aperture and shutter speed settings in quarter-step increments. In order to cope with the finer granularity, aperture and shutter speed settings are displayed in a proprietary suffixed notation, that is, a full f-stop of 2.8 is displayed as 2.80, the next quarter-steps would be 2.81, 2.82, 2.83, before it would continue with 4.00, etc. Auto-exposure bracketing can be configured for a start point between -6.0EV and +6.0EV in 1/4EV steps, with a step granularity of either 1/4, 1/2, 1 or 2EV and a bracket length ranging from 1 to 8 frames. Additionally, it can be combined with built-in timer and intervalometer functions, which provide options to set the start date and time (that is, the year, month, day, hour, and minute of the first exposure in the row), the number of groups (1 to 99 frames), the count of frames per group (1 to 9) as well as the interval time (up to 99h, 59min, 59s).
  2. Jump up^ With firmware 2.0, the Sony Alpha DSLR-A850 and DSLR-A900 support an additional auto-exposure bracking setting for ±3.0 EV in three frames. (Sony press release as of 2 December 2010)
  3. Jump up^ Photographers commonly refer to exposure changes in terms of "stops", but properly, an aperture stop is a device that regulates the amount of light, while a step is a division of a scale. The standard exposure scale consists of power-of-two steps; a one-step exposure increase doubles the exposure, while a one-step decrease halves the exposure; these steps are what are commonly referred to as stops.
  4. Jump up to:a b By default, various MinoltaKonica Minolta and Sony Alpha cameras (including the Maxxum 9 (de), Maxxum 7Maxxum 7DDSLR-A850 and DSLR-A900) will shift the shutter speed when bracketing in manual mode, however, if the AEL button is pressed (or set on hold via custom-function) while releasing the shutter, they will instead shift the aperture value.

References[edit]

  1. Jump up to:a b Adair King, Julie; Burkholder, Dan (2010). Canon EOS Rebel T2i/550D For DummiesFor Dummies. pp. 174–177.
  2. Jump up^ Gerlach, John; Gerlach, Barbara (2009). Digital Landscape Photography. Focal Press.
  3. Jump up^ Mat Smith (February 13, 2014). "Casio's new EX-100 camera makes it harder to mess up the shot by taking nine different ones (hands-on)".
  4. Jump up^ "Casio Exilim EX-100 Announced In Japan". Retrieved February 14, 2014.

External links[edit]


内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值