为什么使用线程池
如果每次使用线程都创建,每次创建和销毁的开销会很大,线程池主要用来解决线程生命周期开销问题和资源不足问题,也消除了线程创建所带来的延迟。
线程池分析
先看下构造函数,其他构造函数都是调用此构造函数
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
}
参数分析
corePoolSize核心线程池的大小。
maximumPoolSize最大允许的线程池大小。
keepAliveTime,unit当线程池数大于corePoolSize时,当一个线程空闲时间超过此时间,将会结束。
workQueue阻塞队列,用于存储还没有执行的任务。
threadFactory用来创建线程。
handler拒绝处理策略,当线程池和队列都满了,有一下几种策略
ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。
ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。
ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)
ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务
当向线程池提交任务时,将会执行execute()方法。
public void execute(Runnable command) {
//如果为null,抛出空指针异常
if (command == null)
throw new NullPointerException();
int c = ctl.get();
//当运行的线程小于核心池大小时
if (workerCountOf(c) < corePoolSize) {
//添加任务,失败返回false
if (addWorker(command, true))
return;
c = ctl.get();
}
//线程池在运行态,尝试加入线程池
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
//如果线程池不在运行态,将任务移除
if (! isRunning(recheck) && remove(command))
//移除任务失败,执行拒绝策略
reject(command);
//检查一下当前线程池的缓存队列数量是否为0
else if (workerCountOf(recheck) == 0)
//是否需要新加一个线程
addWorker(null, false);
}
//再次添加任务,如果失败,就是线程池满了
else if (!addWorker(command, false))
reject(command);
}
再来看看addWorker()方法,添加任务,并执行
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
//获取线程数
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
//线程池未过限,将线程池计数器扩增1,跳出标签
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
//向运行线程池内加上该线程
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
//如果任务启动失败,回滚前面的操作中断线程池或者中断当前线程
addWorkerFailed(w);
}
return workerStarted;
}
接下来看执行线程的方法runWorker()
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
//循环获取任务和子任务
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
//扩展方法,提供子类实现
beforeExecute(wt, task);
Throwable thrown = null;
try {
//当前线程运行
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
线程池的主要方法就学习到这。
其他参考
http://blog.youkuaiyun.com/zclzhangcl/article/details/50772434
http://blog.youkuaiyun.com/u013142781/article/details/51387749