有时候我们不知道我们的后向传播是否写得正确,这时候我们就要使用梯度检测技术来帮我们测试一下。
其数学依据为导数的定义
当eposilon趋于0时,便是J对θ的导数了
N维的梯度检测
我们的参数矩阵储存在python的 一个叫做parameters 的dict中,我们需要将其转换成一个向量
将其矩阵中的每一个值都放入向量之中
计算J_plus[i]的步骤
1.令θ+ = np.copy(value) 深复制整个向量
2.θ+ = θ+ + epslion
3.使用 计算J_plus[i]
4.对J_minus[i] 使用相同的步骤
5.对每一个参数都计算其估算梯度
6.计算其差别
利用np.linalg.norm(X,ord)计算其范数
当差别<10^-7 时说明梯度下降得正确
def gradient_check_n(parameters, gradients, x, y, epsilon = 1e-7):
"""
Checks if backward_propagation_n computes correctly the gradient of the cost output by forward_propagation_n
Arguments:
parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
grad -- output of backward_propagation_n, contains gradients of the cost with respect to the parameters.
x -- input datapoint, of shape (input size, 1)
y -- true "label"
epsilon -- tiny shift to the input to compute approximated gradient with formula(1)
Returns:
difference -- difference (2) between the approximated gradient and the backward propagation gradient
"""
# Set-up variables
parameters_values, _ = dictionary_to_vector(parameters)
grad = gradients_to_vector(gradients)
num_parameters = parameters_values.shape[0]
J_plus = np.zeros((num_parameters, 1))
J_minus = np.zeros((num_parameters, 1))
gradapprox = np.zeros((num_parameters, 1))
# Compute gradapprox
for i in range(num_parameters):
# Compute J_plus[i]. Inputs: "parameters_values, epsilon". Output = "J_plus[i]".
# "_" is used because the function you have to outputs two parameters but we only care about the first one
### START CODE HERE ### (approx. 3 lines)
thetaplus = np.copy(parameters_values) # Step 1
thetaplus[i][0] = thetaplus[i][0] + epsilon # Step 2
J_plus[i], _ = forward_propagation_n(X, Y, vector_to_dictionary(thetaplus)) # Step 3
### END CODE HERE ###
# Compute J_minus[i]. Inputs: "parameters_values, epsilon". Output = "J_minus[i]".
### START CODE HERE ### (approx. 3 lines)
thetaminus = np.copy(parameters_values) # Step 1
thetaminus[i][0] = thetaminus[i][0] - epsilon # Step 2
J_minus[i], _ = forward_propagation_n(X, Y, vector_to_dictionary(thetaminus)) # Step 3
### END CODE HERE ###
# Compute gradapprox[i]
### START CODE HERE ### (approx. 1 line)
gradapprox[i] = (J_plus[i] - J_minus[i]) / (2 * epsilon)
### END CODE HERE ###
# Compare gradapprox to backward propagation gradients by computing difference.
### START CODE HERE ### (approx. 1 line)
# print("grad: {}".format(grad))
# print("gradapprox: {}".format(gradapprox))
numerator = np.linalg.norm(grad-gradapprox, ord=2) # Step 1'
denominator = np.linalg.norm(grad, ord=2) + np.linalg.norm(gradapprox, ord=2) # Step 2'
difference = numerator / denominator # Step 3'
### END CODE HERE ###
if difference > 1e-7:
print ("\033[93m" + "There is a mistake in the backward propagation! difference = " + str(difference) + "\033[0m")
else:
print ("\033[92m" + "Your backward propagation works perfectly fine! difference = " + str(difference) + "\033[0m")
return difference
梯度检测十分缓慢,在训练模型的过程中我们不使用梯度检测,只有在少数迭代的情况下进行检测。
同时梯度检测不适合使用在Drop out之中。
我们使用BP求得梯度之后再用梯度检测进行检验,再对神经层进行Drop out处理