Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 8854 | Accepted: 3726 |
Description
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 2 10 3 341 2 341 3 1105 2 1105 3 0 0
Sample Output
no no yes no yes yes
Source
#include<stdio.h>
#include<string.h>
__int64 powermod(__int64 a,__int64 b,__int64 c)
{
__int64 ans=1;
a=a%c;
while(b)
{
if(b%2)
ans=ans*a%c;
b/=2;
a=a*a%c;
}
return ans;
}
int judge(__int64 a)
{
__int64 i;
for(i=2;i*i<=a;i++)
if(a%i==0)
return 0;
return 1;
}
int main()
{
__int64 a,p,i,j;
while(scanf("%I64d%I64d",&p,&a),p||a)
{
if(judge(p))
printf("no\n");
else
{
if(powermod(a,p,p)==a%p)
printf("yes\n");
else
printf("no\n");
}
}
return 0;
}