poj3641Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8854 Accepte

Pseudoprime numbers
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 8854 Accepted: 3726

Description

Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0

Sample Output

no
no
yes
no
yes
yes

Source

#include<stdio.h>
#include<string.h>
__int64 powermod(__int64 a,__int64 b,__int64 c)
{
	__int64 ans=1;
	a=a%c;
	while(b)
	{
	   if(b%2)
	   ans=ans*a%c;
	   b/=2;
	   a=a*a%c;
	}
	return ans;
}
int judge(__int64 a)
{
	__int64 i;
	for(i=2;i*i<=a;i++)
	if(a%i==0)
	return 0;
	return 1;
}
int main()
{
	__int64 a,p,i,j;
	while(scanf("%I64d%I64d",&p,&a),p||a)
	{
		if(judge(p))
		printf("no\n");
		else
		{
		if(powermod(a,p,p)==a%p)
		printf("yes\n");
		else
		printf("no\n");
	    }
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值