欢迎使用优快云-markdown编辑器

引子:
我们平时总会有一个电话本记录所有朋友的电话,但是,如果有朋友经常联系,那些朋友的电话号码不用翻电话本我们也能记住,但是,如果长时间没有联系了,要再次联系那位朋友的时候,我们又不得不求助电话本,但是,通过电话本查找还是很费时间的。但是,我们大脑能够记住的东西是一定的,我们只能记住自己最熟悉的,而长时间不熟悉的自然就忘记了。
其实,计算机也用到了同样的一个概念,我们用缓存来存放以前读取的数据,而不是直接丢掉,这样,再次读取的时候,可以直接在缓存里面取,而不用再重新查找一遍,这样系统的反应能力会有很大提高。但是,当我们读取的个数特别大的时候,我们不可能把所有已经读取的数据都放在缓存里,毕竟内存大小是一定的,我们一般把最近常读取的放在缓存里(相当于我们把最近联系的朋友的姓名和电话放在大脑里一样)。现在,我们就来研究这样一种缓存机制。
LRU缓存:
LRU缓存利用了这样的一种思想。LRU是Least Recently Used 的缩写,翻译过来就是“最近最少使用”,也就是说,LRU缓存把最近最少使用的数据移除,让给最新读取的数据。而往往最常读取的,也是读取次数最多的,所以,利用LRU缓存,我们能够提高系统的performance.
实现:
要实现LRU缓存,我们首先要用到一个类 LinkedHashMap。 用这个类有两大好处:一是它本身已经实现了按照访问顺序的存储,也就是说,最近读取的会放在最前面,最最不常读取的会放在最后(当然,它也可以实现按照插入顺序存储)。第二,LinkedHashMap本身有一个方法用于判断是否需要移除最不常读取的数,但是,原始方法默认不需要移除(这是,LinkedHashMap相当于一个linkedlist),所以,我们需要override这样一个方法,使得当缓存里存放的数据个数超过规定个数后,就把最不常用的移除掉。LinkedHashMap的API写得很清楚,推荐大家可以先读一下。
要基于LinkedHashMap来实现LRU缓存,我们可以选择inheritance, 也可以选择 delegation, 我更喜欢delegation。基于delegation的实现已经有人写出来了,而且写得很漂亮,我就不班门弄斧了。代码如下:
[java] view plaincopy
import java.util.LinkedHashMap;
import java.util.Collection;
import java.util.Map;
import java.util.ArrayList;

/**
* An LRU cache, based on LinkedHashMap.
*
*


* This cache has a fixed maximum number of elements (cacheSize).
* If the cache is full and another entry is added, the LRU (least recently used) entry is dropped.
*
*


* This class is thread-safe. All methods of this class are synchronized.
*
*


* Author: Christian d’Heureuse, Inventec Informatik AG, Zurich, Switzerland

* Multi-licensed: EPL / LGPL / GPL / AL / BSD.
*/
public class LRUCache

} // end class LRUCache

// Test routine for the LRUCache class.
public static void main (String[] args) {
LRUCache

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值