转自:https://blog.youkuaiyun.com/panweiwei1994/article/details/76760238
ArrayList可以总结出以下几点:
底层:ArrayList是List接口的大小可变数组的实现。
是否允许null:ArrayList允许null元素。
时间复杂度:size、isEmpty、get、set、iterator和listIterator方法都以固定时间运行,时间复杂度为O(1)。add和remove方法需要O(n)时间。与用于LinkedList实现的常数因子相比,此实现的常数因子较低。
容量:ArrayList的容量可以自动增长。
是否同步:ArrayList不是同步的。
迭代器:ArrayList的iterator和listIterator方法返回的迭代器是fail-fast的。
1. 先来看看ArrayList的定义:
public class ArrayList<E> extends AbstractList<E> implements List<E>,RandomAccess,Cloneable,java.io.Serializable
2. 代码分析:
/**
* 初始化默认容量。
*/
private static final int DEFAULT_CAPACITY = 10;
/**
* 指定该ArrayList容量为0时,返回该空数组。
*/
private static final Object[] EMPTY_ELEMENTDATA = {};
/**
* 当调用无参构造方法,返回的是该数组。刚创建一个ArrayList 时,其内数据量为0。
* 它与EMPTY_ELEMENTDATA的区别就是:该数组是默认返回的,而后者是在用户指定容量为0时返回。
*/
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
/**
* 保存添加到ArrayList中的元素。
* ArrayList的容量就是该数组的长度。
* 该值为DEFAULTCAPACITY_EMPTY_ELEMENTDATA 时,当第一次添加元素进入ArrayList中时,数组将扩容值DEFAULT_CAPACITY。
* 被标记为transient,在对象被序列化的时候不会被序列化。
*/
transient Object[] elementData; // non-private to simplify nested class access
/**
* ArrayList的实际大小(数组包含的元素个数)。
* @serial
*/
private int size;
思考:elementData被标记为transient,那么它的序列化和反序列化是如何实现的呢?
ArrayList自定义了它的序列化和反序列化方式。详情请查看writeObject(java.io.ObjectOutputStream s)和readObject(java.io.ObjectOutputStream s)方法。
ArrayList实现了java.io.Serializable接口,但是这个接口是一个空的接口,又是怎样保证实现了它这个接口才能进行序列化和反序列化呢?这时要从ObjectOutputStream的writeObject方法开始寻找原因:
//ObjectOutputStream的writeObject方法
public final void writeObject(Object obj) throws IOException {
if (enableOverride) {
writeObjectOverride(obj);
return;
}
try {
writeObject0(obj, false); //!!!!!
} catch (IOException ex) {
if (depth == 0) {
writeFatalException(ex);
}
throw ex;
}
}
private void writeObject0(Object obj, boolean unshared) throws IOException{
// remaining cases
if (obj instanceof String) {
writeString((String) obj, unshared);
} else if (cl.isArray()) {
writeArray(obj, desc, unshared);
} else if (obj instanceof Enum) {
writeEnum((Enum) obj, desc, unshared);
} else if (obj instanceof Serializable) {
writeOrdinaryObject(obj, desc, unshared);
} else {
if (extendedDebugInfo) {
throw new NotSerializableException(
cl.getName() + "\n" + debugInfoStack.toString());
} else {
throw new NotSerializableException(cl.getName());
}
}
}
writeObject0方法中在进行序列化操作的时候会判断要被序列化的类是否是String、Enum、Array和Serializable类型,如果不是则直接抛出NotSerializableException(未序列化异常)
如果对象是Serializable类型,则调用writeOrdinaryObject方法,在这个方法中有一个写序列化数据的方法 writeSerialData(obj, desc);这个方法中有一个 invokeWriteObject(obj, this)方法,可以通过对象输出流写入对象,这样就将Serializable和序列化与反序列化联系起来了
void invokeWriteObject(Object obj, ObjectOutputStream out) throws IOException, UnsupportedOperationException
ArrayList实际上是动态数组,每次在放满以后自动增长设定的长度值,如果数组自动增长长度设为100,而实际只放了一个元素,那就会序列化99个null元素,那么为了防止一个包含大量空对象的数组被序列化,为了优化存储,所以,ArrayList使用transient来声明存放对象的数组elementData[],
但是,作为一个集合,在序列化过程中还必须保证其中的元素可以被持久化下来,所以,通过重写writeObject 和 readObject方法的方式把其中的元素保留下来。
writeObject方法把elementData数组中的元素遍历的保存到输出流(ObjectOutputStream)中。
readObject方法从输入流(ObjectInputStream)中读出对象并保存赋值到elementData数组中。
//ArrayList中的writeObject和readObject方法参与了序列化和反序列化
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{}
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {}
如何自定义的序列化和反序列化策略??
如果答:可以通过在被序列化的类中增加writeObject 和 readObject方法???
那么又有一个问题,虽然ArrayList中写了writeObject 和 readObject 方法,但是这两个方法并没有显示的被调用啊。那么如果一个类中包含writeObject 和 readObject 方法,那么这两个方法是怎么被调用的呢?
答:在使用ObjectOutputStream的writeObject方法和ObjectInputStream的readObject方法时,会通过反射reflect的方式调用。
构造方法
接下来,看ArrayList提供的构造方法。ArrayList提供了三种构造方法。
ArrayList(int initialCapacity):构造一个指定容量为capacity的空ArrayList。
ArrayList():构造一个初始容量为 10 的空列表。
ArrayList(Collection<? extends E> c):构造一个包含指定 collection 的元素的列表,这些元素是按照该 collection 的迭代器返回它们的顺序排列的。
ArrayList( int initialCapacity)
/**
* 构造一个指定初始化容量为capacity的空ArrayList。
* @param initialCapacity ArrayList的指定初始化容量
* @throws IllegalArgumentException 如果ArrayList的指定初始化容量为负。
*/
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
ArrayList()
/**
* 构造一个初始容量为 10 的空列表。
*/
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
ArrayList(Collection<? extends E> c)
/**
* 构造一个包含指定 collection 的元素的列表,这些元素是按照该 collection 的迭代器返回它们的顺序排列的。
*
* @param c 其元素将放置在此列表中的 collection
* @throws NullPointerException 如果指定的 collection 为 null
*/
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
if ((size = elementData.length) != 0) {
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// replace with empty array.
this.elementData = EMPTY_ELEMENTDATA;
}
}
核心方法
ArrayList有以下核心方法
方法名 时间复杂度
get(int index) O(1)
add(E e) O(1)
add(add(int index, E element)) O(n)
remove(int index) O(n)
set(int index, E element) O(1)
get( int index)
/**
* 返回list中索引为index的元素
*
* @param index 需要返回的元素的索引
* @return list中索引为index的元素
* @throws IndexOutOfBoundsException 如果索引超出size
*/
public E get(int index) {
//越界检查
rangeCheck(index);
//返回索引为index的元素
return elementData(index);
}
/**
* 越界检查。
* 检查给出的索引index是否越界。
* 如果越界,抛出运行时异常。
* 这个方法并不检查index是否合法。比如是否为负数。
* 如果给出的索引index>=size,抛出一个越界异常
*/
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* 返回索引为index的元素
*/
@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}
从代码中可以看到,因为ArrayList底层是数组,所以它的get方法非常简单,先是判断一下有没有越界,之后就直接通过数组下标来获取元素。get方法的时间复杂度是O(1)。
add(E e)
/**
* 添加元素到list末尾.
*
* @param e 被添加的元素
* @return true
*/
public boolean add(E e) {
//确认list容量,如果不够,容量加1。注意:只加1,保证资源不被浪费,然后顺着调用链, 发现ensureExplicitCapacity中对modCount进行了加1操作
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
add方法每次都会使modCount加1,这个属性是怎么来的呢? 继承自AbstractList, 父类AbstractList中有一个属性modCount, 定义如下:
protected transient int modCount = 0;
从源码中可以看到,add(E e)有两个步骤:
空间检查,如果有需要进行扩容
插入元素
空间检查和扩容的介绍在下面。
空间的问题解决后,插入过程就显得非常简单。
扩容-ensureCapacity等方法
/**
* 增加ArrayList容量。
*
* @param minCapacity 想要的最小容量
*/
public void ensureCapacity(int minCapacity) {
// 如果elementData等于DEFAULTCAPACITY_EMPTY_ELEMENTDATA,最小扩容量为DEFAULT_CAPACITY,否则为0
int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)? 0: DEFAULT_CAPACITY;
//如果想要的最小容量大于最小扩容量,则使用想要的最小容量。
if (minCapacity > minExpand) {
ensureExplicitCapacity(minCapacity);
}
}
/**
* 数组容量检查,不够时则进行扩容,只供类内部使用。
*
* @param minCapacity 想要的最小容量
*/
private void ensureCapacityInternal(int minCapacity) {
// 若elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA,则取minCapacity为DEFAULT_CAPACITY和参数minCapacity之间的最大值
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
ensureExplicitCapacity(minCapacity);
}
/**
* 数组容量检查,不够时则进行扩容,只供类内部使用
*
* @param minCapacity 想要的最小容量
*/
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// 确保指定的最小容量 > 数组缓冲区当前的长度
if (minCapacity - elementData.length > 0)
//扩容
grow(minCapacity);
}
/**
* 分派给arrays的最大容量
* 为什么要减去8呢?
* 因为某些VM会在数组中保留一些头字,尝试分配这个最大存储容量,可能会导致array容量大于VM的limit,最终导致OutOfMemoryError。
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
/**
* 扩容,保证ArrayList至少能存储minCapacity个元素
* 第一次扩容,逻辑为newCapacity = oldCapacity + (oldCapacity >> 1);即在原有的容量基础上增加一半。第一次扩容后,如果容量还是小于minCapacity,就将容量扩充为minCapacity。
*
* @param minCapacity 想要的最小容量
*/
private void grow(int minCapacity) {
// 获取当前数组的容量
int oldCapacity = elementData.length;
// 扩容。新的容量=当前容量+当前容量/2.即将当前容量增加一半。
int newCapacity = oldCapacity + (oldCapacity >> 1);
//如果扩容后的容量还是小于想要的最小容量
if (newCapacity - minCapacity < 0)
//将扩容后的容量再次扩容为想要的最小容量
newCapacity = minCapacity;
//如果扩容后的容量大于临界值,则进行大容量分配
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData,newCapacity);
}
/**
* 进行大容量分配
*/
private static int hugeCapacity(int minCapacity) {
//如果minCapacity<0,抛出异常
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
//如果想要的容量大于MAX_ARRAY_SIZE,则分配Integer.MAX_VALUE,否则分配MAX_ARRAY_SIZE
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
看完了代码,可以对扩容方法总结如下:
进行空间检查,决定是否进行扩容,以及确定最少需要的容量
如果确定扩容,就执行grow(int minCapacity),minCapacity为最少需要的容量
第一次扩容,逻辑为newCapacity = oldCapacity + (oldCapacity >> 1);即在原有的容量基础上增加一半。
第一次扩容后,如果容量还是小于minCapacity,就将容量扩充为minCapacity。
对扩容后的容量进行判断,如果大于允许的最大容量MAX_ARRAY_SIZE,则将容量再次调整为MAX_ARRAY_SIZE。至此扩容操作结束。
add( int index, E element)
/**
* 在制定位置插入元素。当前位置的元素和index之后的元素向后移一位
*
* @param index 即将插入元素的位置
* @param element 即将插入的元素
* @throws IndexOutOfBoundsException 如果索引超出size
*/
public void add(int index, E element) {
//越界检查
rangeCheckForAdd(index);
//确认list容量,如果不够,容量加1。注意:只加1,保证资源不被浪费
ensureCapacityInternal(size + 1); // Increments modCount!!
// 对数组进行复制处理,目的就是空出index的位置插入element,并将index后的元素位移一个位置
System.arraycopy(elementData, index, elementData, index + 1,size - index);
//将指定的index位置赋值为element
elementData[index] = element;
//实际容量+1
size++;
}
从源码中可以看到,add(E e)有三个步骤:
越界检查
空间检查,如果有需要进行扩容
插入元素
越界检查很简单
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
空间检查和扩容的介绍在上面。
空间的问题解决后,插入过程就显得非常简单。
add(int index, E e)需要先对元素进行移动,然后完成插入操作,也就意味着该方法有着线性的时间复杂度,即O(n)。
remove( int index)
/**
* 删除list中位置为指定索引index的元素
* 索引之后的元素向左移一位
*
* @param index 被删除元素的索引
* @return 被删除的元素
* @throws IndexOutOfBoundsException 如果参数指定索引index>=size,抛出一个越界异常
*/
public E remove(int index) {
//检查索引是否越界。如果参数指定索引index>=size,抛出一个越界异常
rangeCheck(index);
//结构性修改次数+1
modCount++;
//记录索引为inde处的元素
E oldValue = elementData(index);
// 删除指定元素后,需要左移的元素个数
int numMoved = size - index - 1;
//如果有需要左移的元素,就移动(移动后,该删除的元素就已经被覆盖了)
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
// size减一,然后将索引为size-1处的元素置为null。为了让GC起作用,必须显式的为最后一个位置赋null值
elementData[--size] = null; // clear to let GC do its work
//返回被删除的元素
return oldValue;
}
/**
* 越界检查。
* 检查给出的索引index是否越界。
* 如果越界,抛出运行时异常。
* 这个方法并不检查index是否合法。比如是否为负数。
* 如果给出的索引index>=size,抛出一个越界异常
*/
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
看完代码后,可以将ArrayList删除指定索引的元素的步骤总结为
检查索引是否越界。如果参数指定索引index>=size,抛出一个越界异常
将索引大于index的元素左移一位(左移后,该删除的元素就被覆盖了,相当于被删除了)。
将索引为size-1处的元素置为null(为了让GC起作用)。
注意:为了让GC起作用,必须显式的为最后一个位置赋null值。上面代码中如果不手动赋null值,除非对应的位置被其他元素覆盖,否则原来的对象就一直不会被回收。
set( int index, E element)
/**
* 替换指定索引的元素
*
* @param 被替换元素的索引
* @param element 即将替换到指定索引的元素
* @return 返回被替换的元素
* @throws IndexOutOfBoundsException 如果参数指定索引index>=size,抛出一个越界异常
*/
public E set(int index, E element) {
//检查索引是否越界。如果参数指定索引index>=size,抛出一个越界异常
rangeCheck(index);
//记录被替换的元素
E oldValue = elementData(index);
//替换元素
elementData[index] = element;
//返回被替换的元素
return oldValue;
}
用到的设计模式
迭代器模式