Network in Network

本文探讨了卷积神经网络(CNN)中存在的关键问题,并提出了一种增强模型局部区域判别能力的方法。通过使用全局平均池化技术,在提高模型泛化能力的同时减少了过拟合的风险。文中还详细介绍了该方法的具体实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Key Problems

  • CNN implicitly makes the assumption that the latent concepts are linearly separable
  • the data for the same concept often live on a nonlinear manifold, therefore the representations that capture these concepts are generally highly nonlinear function of the input

Contributions

  • enhance model discriminability for local patches within the receptive field
  • utilize global average pooling over feature maps in the classification layer, which is easier to interpret and less prone to overfitting

Methods

这里写图片描述

Linear convolution layer

这里写图片描述

MLP Convolution Layers

这里写图片描述

Architecture

这里写图片描述

Global Average Pooling
  • This structure bridges the convolutional structure with traditional neural network classifiers.
  • It treats the convolutional layers as feature extractors, and the resulting feature is classified in a traditional way.
  • t has improved the generalization ability and largely prevents overfitting

Experiments

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值