【1】假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问
题是如何只用这2个水壶从池塘里取得3升的水。
题是如何只用这2个水壶从池塘里取得3升的水。
由满6向空5 倒,剩1升,把这1升倒5里,然后6剩满,倒5里面,由于5里面有1升水,因此6只能向5倒4升水,然后将6剩余的2升,倒入空的5里面,再灌满6向5里倒3升,剩余3。升
【2】周雯的妈妈是豫林水泥厂的化验员。 一天,周雯来到化验室做作业。做完后想出
去玩。 "等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前
面3只盛满了水,后面3只是空的。你 能只移动1只玻璃杯,就便盛满水的杯子和空杯子
间隔起来 吗?" 爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到
了。 请你想想看,"小机灵"是怎样做的?
去玩。 "等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前
面3只盛满了水,后面3只是空的。你 能只移动1只玻璃杯,就便盛满水的杯子和空杯子
间隔起来 吗?" 爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到
了。 请你想想看,"小机灵"是怎样做的?
将中间个满的被子倒进中间的空被子里面。
【3】三个小伙子同时爱上了一 个姑娘,为了决定他们谁能娶这个姑娘,他们决定用手
枪进行一次决斗。小李的命中率是30%,小黄比他好些,命中率是50%,最出色的枪手
是小林,他从不失 误,命中率是100%。由于这个显而易见的事实,为公平起见,他们
决定按这样的顺序:小李先开枪,小黄第二,小林最后。然后这样循环,直到他们只剩
下一个 人。那么这三个人中谁活下来的机会最大呢?他们都应该采取什么样的策略?
小林在轮到自己且小黄没死的条件下必杀黄,再跟菜鸟李单挑。
枪进行一次决斗。小李的命中率是30%,小黄比他好些,命中率是50%,最出色的枪手
是小林,他从不失 误,命中率是100%。由于这个显而易见的事实,为公平起见,他们
决定按这样的顺序:小李先开枪,小黄第二,小林最后。然后这样循环,直到他们只剩
下一个 人。那么这三个人中谁活下来的机会最大呢?他们都应该采取什么样的策略?
小林在轮到自己且小黄没死的条件下必杀黄,再跟菜鸟李单挑。
所以黄在林没死的情况下必打林,否则自己必死。
小李经过计算比较(过程略),会决定自己先打小林。
于是经计算,小李有873/2600≈33.6%的生机;
小黄有109/260≈41.9%的生机;
小林有24.5%的生机。
哦,这样,那小李的第一枪会朝天开,以后当然是打敌人,谁活着打谁;
小黄一如既往先打林,小林还是先干掉黄,冤家路窄啊!
最后李,黄,林存活率约38:27:35;
菜鸟活下来抱得美人归的几率大。
李先放一空枪(如果合伙干中林,自己最吃亏)
黄会选林打一枪(如不打林,自己肯定先玩完了)
林会选黄打一枪(毕竟它命中率高)
李黄对决 0.3:0.28 0.4可能性
李林对决 0.3:0.6 0.6可能性
成功率0.73
黄会选林打一枪(如不打林,自己肯定先玩完了)
林会选黄打一枪(毕竟它命中率高)
李黄对决 0.3:0.28 0.4可能性
李林对决 0.3:0.6 0.6可能性
成功率0.73
李和黄打林
李黄对决 0.3:0.4 0.7*0.4可能性
李林对决 0.3:0.7*0.6*0.7 0.7*0.6可能性
成功率0.64
李黄对决 0.3:0.4 0.7*0.4可能性
李林对决 0.3:0.7*0.6*0.7 0.7*0.6可能性
成功率0.64
【4】一间囚房里关押着两个犯人。每天监狱都会为这间囚房提供一罐汤,让这两个犯人
自己来分。起初,这两个 人经常会发生争执,因为他们总是有人认为对方的汤比自己的
多。后来他们找到了一个两全其美的办法:一个人分汤,让另一个人先选。于是争端就
这么解决了。可 是,现在这间囚房里又加进来一个新犯人,现在是三个人来分汤。必须
寻找一个新的方法来维持他们之间的和平。该怎么办呢?
按:心理问题,不是逻辑问题
是让甲分汤,分好后由乙和丙按任意顺序给自己挑汤,剩余一碗留给甲。这样乙和丙两人的总和肯定是他们两人可拿到的最大。然后将他们两人的汤混合之后再按两人的方法再次分汤。
【5】在一张长方形的桌面上放了n个一样大小的圆形硬币。这些硬币中可能有一些不完
全在桌面内,也可能有一些彼此重叠;当再多放一个硬币而它的圆心在桌面内时,新放
的硬币便必定与原先某些硬币重叠。请证明整个桌面可以用4n个硬币完全覆盖
要想让新放的硬币不与原先的硬币重叠,两个硬币的圆心距必须大于直径。所以要想实现
全在桌面内,也可能有一些彼此重叠;当再多放一个硬币而它的圆心在桌面内时,新放
的硬币便必定与原先某些硬币重叠。请证明整个桌面可以用4n个硬币完全覆盖
要想让新放的硬币不与原先的硬币重叠,两个硬币的圆心距必须大于直径。所以要想实现
当再多放一个硬币而它的圆心在桌面内时,新放的硬币便必定与原先某些硬币重叠。
将覆盖满桌面的硬币从桌角开始隔一个拿掉一个,则长、宽各减少一半。面积减少为原来的1/4。即桌面面积是原来的硬币面积的4倍。
IBM挑战2005年7月网址 (
http://domino.research.ibm.com/C ... enges/July2005.html)
snagit.gif (7.21 KB)
2008-2-25 10:59
O0 u- F! a2 J) r+ Z9 D那个红色的新圆的半径是不是√2呀?如果是的话,再将这样的红色大圆四个重叠组成一个更大的圆,那么半径是不是就是2了?
那么!原来桌子上的点到最近的圆心的距离都小于2,如果把桌子进行分割成相等的4块小桌子,那么每块小桌子的边长都减半,因此,桌面上到最近的圆心的距离就小于1,因此……覆盖!
【6】一个球、一把长度大约是球的直径2/3长度的直尺.你怎样测出球的半径?方法很
多,看看谁的比较巧妙
放气
【7】五个大小相同的一元人民币硬币。要求两两相接触,应该怎么摆?
【7】五个大小相同的一元人民币硬币。要求两两相接触,应该怎么摆?
底下放一个1,然后2 3放在1上面,另外的4 5竖起来放在1的上面。
【8】猜牌问题
S先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:红桃A、Q、4 黑桃J、8、
4、2、7、3 草花K、Q、5、4、6 方块A、5。约翰教授从这16张牌中挑出一张牌来,并把
这张牌的点数告诉 P先生,把这张牌的花色告诉Q先生。这时,约翰教授问P先生和Q 先
生:你们能从已知的点数或花色中推知这张牌是什么牌吗? 于是,S先生听到如下的对
话:P先生:我不知道这张牌。
Q先生:我知道你不知道这张牌。
P先生:现在我知道这张牌了。
Q先生:我也知道了。
听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。
请问:这张牌是什么牌?
S先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:红桃A、Q、4 黑桃J、8、
4、2、7、3 草花K、Q、5、4、6 方块A、5。约翰教授从这16张牌中挑出一张牌来,并把
这张牌的点数告诉 P先生,把这张牌的花色告诉Q先生。这时,约翰教授问P先生和Q 先
生:你们能从已知的点数或花色中推知这张牌是什么牌吗? 于是,S先生听到如下的对
话:P先生:我不知道这张牌。
Q先生:我知道你不知道这张牌。
P先生:现在我知道这张牌了。
Q先生:我也知道了。
听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。
请问:这张牌是什么牌?
方块5
【9】一个教授逻辑学的教授,有三个学生,而且三个学生均非常聪明!
一天教授给他们出了一个题,教授在每个人脑门上贴了一张纸条并告诉他们,每个人的
纸条上都写了一个正整数,且某两个数的和等于第三个!(每个人可以看见另两个数,
但看不见自己的)
教授问第一个学生:你能猜出自己的数吗?回答:不能,问第二个,不能,第三个,不
能,再问第一个,不能,第二个,不能,第三个:我猜出来了,是144!教授很满意的笑
了。请问您能猜出另外两个人的数吗?
经过第一轮,说明任何两个数都是不同的。
第二轮,前两个人没有猜出,说明任何一个数都不是其它数的两倍。
现在有了以下几个条件:
1.每个数大于0
2.两两不等
3.任意一个数不是其他数的两倍。
每个数字可能是另两个之和或之差,第三个人能猜出144,必然根据前面三个条件排除了其中的一种可能。
假设:是两个数之差,即x-y=144。这时1(x,y>0)和2(x!=y)都满足,所以要否定x+y必然要使3不满足,即x+y=2y,解得x=y,不成立(不然第一轮就可猜出),所以不是两数之差。
因此是两数之和,即x+y=144。同理,这时1,2都满足,必然要使3不满足,即x-y=2y,两方程联立,可得x=108,y=36。
第二轮,前两个人没有猜出,说明任何一个数都不是其它数的两倍。
现在有了以下几个条件:
1.每个数大于0
2.两两不等
3.任意一个数不是其他数的两倍。
每个数字可能是另两个之和或之差,第三个人能猜出144,必然根据前面三个条件排除了其中的一种可能。
假设:是两个数之差,即x-y=144。这时1(x,y>0)和2(x!=y)都满足,所以要否定x+y必然要使3不满足,即x+y=2y,解得x=y,不成立(不然第一轮就可猜出),所以不是两数之差。
因此是两数之和,即x+y=144。同理,这时1,2都满足,必然要使3不满足,即x-y=2y,两方程联立,可得x=108,y=36。
这两轮猜的顺序其实分别为这样:第一轮(一号,二号),第二轮(三号,一号,二号)。这样分大家在每轮结束时获得的信息是相同的(即前面的三个条件)。
那么就假设我们是C,来看看C是怎么做出来的:
C看到的是A的36和B的108,因为条件,两个数的和是第三个,那么自己要么是72要么是144(猜到这个是因为72的话,108就是36和72的和,144的话就是108和36的和。这样子这句话看不懂的举手):
假设自己(C)是72的话,那么B在第二回合的时候就可以看出来,下面是如果C是72,B的思路:
这种情况下,B看到的就是A的36和C的72,那么他就可以猜自己,是36或者是108(猜到这个是因为36的话,36加36等于72,108的话就是36和108的和):
这种情况下,B看到的就是A的36和C的72,那么他就可以猜自己,是36或者是108(猜到这个是因为36的话,36加36等于72,108的话就是36和108的和):
如果假设自己(B)头上是36,那么,C在第一回合的时候就可以看出来,下面是如果B是36,C的思路:
这种情况下,C看到的就是A的36和B的36,那么他就可以猜自己,是72或者是0(这个不再解释了):
这种情况下,C看到的就是A的36和B的36,那么他就可以猜自己,是72或者是0(这个不再解释了):
如果假设自己(C)头上是0,那么,A在第一回合的时候就可以看出来,下面是如果C是0,A的思路:
这种情况下,A看到的就是B的36和C的0,那么他就可以猜自己,是36或者是36(这个不再解释了),那他可以一口报出自己头上的36。
(然后是逆推逆推逆推),
现在A在第一回合没报出自己的36,C(在B的想象中)就可以知道自己头上不是0,如果其他和B的想法一样(指B头上是36),那么C在第一回合就可以报出自己的72。
现在C在第一回合没报出自己的36,B(在C的想象中)就可以知道自己头上不是36,如果其他和C的想法一样(指C头上是72),那么B在第二回合就可以报出自己的108。
现在B在第二回合没报出自己的108,C就可以知道自己头上不是72,那么C头上的唯一可能就是144了。
【10】某城市发生了一起汽车撞人逃跑事件
该城市只有两种颜色的车,蓝色15% 绿色85%
事发时有一个人在现场看见了
他指证是蓝车
但是根据专家在现场分析,当时那种条件能看正确的可能性是80%
那么,肇事的车是蓝车的概率到底是多少?
这种情况下,A看到的就是B的36和C的0,那么他就可以猜自己,是36或者是36(这个不再解释了),那他可以一口报出自己头上的36。
(然后是逆推逆推逆推),
现在A在第一回合没报出自己的36,C(在B的想象中)就可以知道自己头上不是0,如果其他和B的想法一样(指B头上是36),那么C在第一回合就可以报出自己的72。
现在C在第一回合没报出自己的36,B(在C的想象中)就可以知道自己头上不是36,如果其他和C的想法一样(指C头上是72),那么B在第二回合就可以报出自己的108。
现在B在第二回合没报出自己的108,C就可以知道自己头上不是72,那么C头上的唯一可能就是144了。
【10】某城市发生了一起汽车撞人逃跑事件
该城市只有两种颜色的车,蓝色15% 绿色85%
事发时有一个人在现场看见了
他指证是蓝车
但是根据专家在现场分析,当时那种条件能看正确的可能性是80%
那么,肇事的车是蓝车的概率到底是多少?
15%*80%/(85%×20%+15%*80%)
【11】有一人有240公斤 水,他想运往干旱地区赚钱。他每次最多携带60公斤,并且每
前进一公里须耗水1公斤(均匀耗水)。假设水的价格在出发地为0,以后,与运输路程
成正比, (即在10公里处为10元/公斤,在20公里处为20元/公斤......),又假设他必
须安全返回,请问,他最多可赚多少钱?
前进一公里须耗水1公斤(均匀耗水)。假设水的价格在出发地为0,以后,与运输路程
成正比, (即在10公里处为10元/公斤,在20公里处为20元/公斤......),又假设他必
须安全返回,请问,他最多可赚多少钱?
450×4
【12】现在共有100匹马跟100块石头,马分3种,大型马;中型马跟小型马。其中一匹大
马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头。问需要多少匹
大马,中型马跟小型马?(问题的关键是刚好必须是用完100匹马)
6种结果
【13】1=5 2=15 3=215 4=2145 那么5=?
马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头。问需要多少匹
大马,中型马跟小型马?(问题的关键是刚好必须是用完100匹马)
6种结果
【13】1=5 2=15 3=215 4=2145 那么5=?
1.
【14】有2n个人排队进电影院,票价是50美分。在这2n个人当中,其中n个人只有50美
分,另外n个人有1美元(纸票子)。愚蠢的电影院开始卖票时1分钱也没有。
问: 有多少种排队方法 使得 每当一个拥有1美元买票时,电影院都有50美分找钱
注:
1美元=100美分
拥有1美元的人,拥有的是纸币,没法破成2个50美分
递归算法
定义
t(m,n) 为m个人手持5元,n个人手持10元时,购票的方案数.
1. 只有m个人手持5元, 没有人手持10元
t(m,0)=1, n=0
2. 找不开钱
t(m,n)=0, m<n
3. 其他情况
t(m,n)
排队情况为: 1 , 2 , 3 … m+n-2 , m+n-1 , m+n
研究第 m+n 个人加入后购票的总方案数:
情况1:在前m+n-1个人中持5元者有m位,持10元者有n-1位,可推出第m+n入队者手持10元. 此种情况的总方案数为 t(m,n-1)
情况2:在前m+n-1个人中持5元者有m-1位,持10元者有n位,可推出第m+n入队者手持5元. 此种情况的总方案数为t(m-1,n)
由加法原理
t(m,n)=t(m-1,n)+t(m,n-1)
#include<iostream>
#include<iomanip>
using namespace std;
long int t(int m,int n)
{
if(n==0) return 1;
if (m<n) return 0;
return (t(m,n-1)+t(m-1,n));
}
int main()
{
int nn;
cin>>nn;
cout<<t(nn,nn)<<endl;
return 0;
}
【15】一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回
来了,11块卖给另外一个人。问他赚了多少?
【15】一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回
来了,11块卖给另外一个人。问他赚了多少?
2
【16】有一种体育竞赛共含M个项目,有运动员A,B,C参加,在每一项目中,第一,第
二,第三名分别的X,Y,Z分,其中X,Y,Z为正整数且X>Y>Z。最后A得22分,B与C均得9
分,B在百米赛中取得第一。求M的值,并问在跳高中谁得第二名。
因为ABC三人得分共40分,三名得分都为正整数且不等,所以前三名得分最少为6分,40=5*8=4*10=2*20=1*20,不难得出项目数只能是5.即M=5.
A得分为22分,共5项,所以每项第一名得分只能是5,故A应得4个一名一个二名.22=5*4+2,第二名得1分,又B百米得第一,所以A只能得这个第二.
B的5项共9分,其中百米第一5分,其它4项全是1分,9=5+1=1+1+1.即B除百米第一外全是第三,跳高第二必定是C所得.
【17】前提:
1 有五栋五种颜色的房子
2 每一位房子的主人国籍都不同
3 这五个人每人只喝一种饮料,只抽一种牌子的香烟,只养一种宠物
4 没有人有相同的宠物,抽相同牌子的香烟,喝相同的饮料
提示:
1 英国人住在红房子里
2 瑞典人养了一条狗
3 丹麦人喝茶
4 绿房子在白房子左边
5 绿房子主人喝咖啡
6 抽PALL MALL烟的人养了一只鸟
7 黄房子主人抽DUNHILL烟
8 住在中间那间房子的人喝牛奶
9 挪威人住第一间房子
10 抽混合烟的人住在养猫人的旁边
11 养马人住在抽DUNHILL烟的人旁边
12 抽BLUE MASTER烟的人喝啤酒
13 德国人抽PRINCE烟
14 挪威人住在蓝房子旁边
15 抽混合烟的人的邻居喝矿泉水
1 有五栋五种颜色的房子
2 每一位房子的主人国籍都不同
3 这五个人每人只喝一种饮料,只抽一种牌子的香烟,只养一种宠物
4 没有人有相同的宠物,抽相同牌子的香烟,喝相同的饮料
提示:
1 英国人住在红房子里
2 瑞典人养了一条狗
3 丹麦人喝茶
4 绿房子在白房子左边
5 绿房子主人喝咖啡
6 抽PALL MALL烟的人养了一只鸟
7 黄房子主人抽DUNHILL烟
8 住在中间那间房子的人喝牛奶
9 挪威人住第一间房子
10 抽混合烟的人住在养猫人的旁边
11 养马人住在抽DUNHILL烟的人旁边
12 抽BLUE MASTER烟的人喝啤酒
13 德国人抽PRINCE烟
14 挪威人住在蓝房子旁边
15 抽混合烟的人的邻居喝矿泉水
问题是:谁养鱼???
第一间是黄房子,挪威人住,喝矿泉水,抽DUNHILL香烟,养猫;
! f/ [% a: /6 L! J. Q9 x第二间是蓝房子,丹麦人住,喝茶,抽混合烟,养马;
+ o8 _0 S) L8 i' E' u第三间是红房子,英国人住,喝牛奶,抽PALL MALL烟,养鸟;/ N9 o/ n2 M# U" c
第四间是绿房子,德国人住,喝咖啡,抽PRINCE烟,养猫、马、鸟、狗以外的宠物;7 P5 l) G, G, |; C, {7 V
第五间是白房子,瑞典人住,喝啤酒,抽BLUE MASTER烟,养狗。
第一间是黄房子,挪威人住,喝矿泉水,抽DUNHILL香烟,养猫;
! f/ [% a: /6 L! J. Q9 x第二间是蓝房子,丹麦人住,喝茶,抽混合烟,养马;
+ o8 _0 S) L8 i' E' u第三间是红房子,英国人住,喝牛奶,抽PALL MALL烟,养鸟;/ N9 o/ n2 M# U" c
第四间是绿房子,德国人住,喝咖啡,抽PRINCE烟,养猫、马、鸟、狗以外的宠物;7 P5 l) G, G, |; C, {7 V
第五间是白房子,瑞典人住,喝啤酒,抽BLUE MASTER烟,养狗。
【18】5个人来自不同地方,住不同房子,养不同动物,吸不同牌子香烟,喝不同饮料,
喜欢不同食物。根据以下线索确定谁是养猫的人。
1. 红房子在蓝房子的右边,白房子的左边(不一定紧邻)
2. 黄房子的主人来自香港,而且他的房子不在最左边。
3. 爱吃比萨的人住在爱喝矿泉水的人的隔壁。
4. 来自北京的人爱喝茅台,住在来自上海的人的隔壁。
5. 吸希尔顿香烟的人住在养马人的右边隔壁。
6. 爱喝啤酒的人也爱吃鸡。
7. 绿房子的人养狗。
8. 爱吃面条的人住在养蛇人的隔壁。
9. 来自天津的人的邻居(紧邻)一个爱吃牛肉,另一个来自成都。
10.养鱼的人住在最右边的房子里。
11.吸万宝路香烟的人住在吸希尔顿香烟的人和吸“555”香烟的人的中间(紧邻)
12.红房子的人爱喝茶。
13.爱喝葡萄酒的人住在爱吃豆腐的人的右边隔壁。
14.吸红塔山香烟的人既不住在吸健牌香烟的人的隔壁,也不与来自上海的人相邻。
15.来自上海的人住在左数第二间房子里。
16.爱喝矿泉水的人住在最中间的房子里。
17.爱吃面条的人也爱喝葡萄酒。
18.吸“555”香烟的人比吸希尔顿香烟的人住的靠右
第一间是兰房子,住北京人,养马,抽健牌香烟,喝茅台,吃豆腐;2 G7 x% z0 v; C
第二间是绿房子,住上海人,养狗,抽希尔顿,喝葡萄酒,吃面条;% C2 k4 o8 t" p6 L* x
第三间是黄房子,住香港人,养蛇,抽万宝路,喝矿泉水,吃牛肉;
& N" S% x# o3 a; g第四间是红房子,住天津人,抽555,喝茶,吃比萨;
7 /5 s. J# d, Q/ N% N' O# ]第五间是白房子,住成都人,养鱼,抽红塔山,喝啤酒,吃鸡。
【19】斗地主附残局
地主手中牌2、K、Q、J、10、9、8、8、6、6、5、5、3、3、3、3、7、7、7、7
长工甲手中牌大王、小王、2、A、K、Q、J、10、Q、J、10、9、8、5、5、4、4
长工乙手中牌2、2、A、A、A、K、K、Q、J、10、9、9、8、6、6、4、4
三家都是明手,互知底牌。要求是:在三家都不打错牌的情况下,地主必须要么输要么
赢。
问:哪方会赢?
无解 地主怎么出都会输
【20】一楼到十楼的每层电梯门口都放着一颗钻石,钻石大小不一。你乘坐电梯从一楼
到十楼,每层楼电梯门都会打开一次,只能拿一次钻石,问怎样才能拿到最大的一颗?
这个题目没有正确答案,出得太弱。
【21】U2合唱团在17分钟 内得赶到演唱会场,途中必需跨过一座桥,四个人从桥的同一
端出发,你得帮助他们到达另一端,天色很暗,而他们只有一只手电筒。一次同时最多
可以有两人一起 过桥,而过桥的时候必须持有手电筒,所以就得有人把手电筒带来带
去,来回桥两端。手电筒是不能用丢的方式来传递的。四个人的步行速度各不同,若两
人同行则 以较慢者的速度为准。Bono需花1分钟过桥,Edge需花2分钟过桥,Adam需花5
分钟过桥,Larry需花10分钟过桥。他们要如何在17分钟内过 桥呢?
2+1先过 2
然后1回来送手电筒 1
5+10再过 10
2回来送手电筒 2
2+1过去 2
总共2+1+10+2+2=17分钟
【22】一个家庭有两个小孩,其中有一个是女孩,问另一个也是女孩的概率
(假定生男生女的概率一样)
1/3
样本空间为(男男)(女女)(男女)(女男)
A=(已知其中一个是女孩)=)(女女)(男女)(女男)
B=(另一个也是女孩)=(女女)
于是P(B/A)=P(AB)/P(A)=(1/4)/(3/4)=1/3
A=(已知其中一个是女孩)=)(女女)(男女)(女男)
B=(另一个也是女孩)=(女女)
于是P(B/A)=P(AB)/P(A)=(1/4)/(3/4)=1/3
【23】为什么下水道的盖子是圆的?
不会掉下去
【24】有7克、2克砝码各一个,天平一只,如何只用这些物品三次将140克的盐分成50、
90克各一份?
140――》70+70 70――》35+35
35+70=105
105=》50+7 + 55+2
55+35=90
【25】芯片测试:有2k块芯片,已知好芯片比坏芯片多.请设计算法从其中找出一片
好芯片,说明你所用的比较次数上限.
其中:好芯片和其它芯片比较时,能正确给出另一块芯片是好还是坏.
坏芯片和其它芯片比较时,会随机的给出好或是坏