使用Alexnet训练自己的数据集

自从我会用第一个神经网络以后,我第一次吧数据送入网络进行训练,获得了成就感,今天我又一次在原来的基础上,改写了网络模型,现在我可以在Alexnet上运行自己的网络结构了,

Alexnet的网络结构

在这里插入图片描述
在这里插入图片描述
数据预处理和之前的都一样,可以参考上一篇 的模型,下面的这篇模型直接改写网络的inference结构就可以了:

#=========================================================================
import tensorflow as tf
#=========================================================================
#网络结构定义
    #输入参数:images,image batch、4D tensor、tf.float32、[batch_size, width, height, channels]
    #返回参数:logits, float、 [batch_size, n_classes]
def inference(images, batch_size, n_classes):
#一个简单的卷积神经网络,卷积+池化层x2,全连接层x2,最后一个softmax层做分类。
#卷积层1
#64个3x3的卷积核(3通道),padding=’SAME’,表示padding后卷积的图与原图尺寸一致,激活函数relu()
    parameters = []
    # 第1个卷积层
    with tf.name_scope('conv1') as scope:
        kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 64], dtype=tf.float32,
                                                 stddev=1e-1), name='weights')
        conv = tf.nn.conv2d(images, kernel, [1, 4, 4, 1], padding='SAME')
        biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),
                             trainable=True, name='biases')
        bias = tf.nn.bias_add(conv, biases)
        conv1 = tf.nn.re
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值