codeforces 485D (RMQ)

本文深入探讨了RMQ(区间最值查询)算法的应用,通过一个具体问题——寻找数列中两数相除余数的最大值,展示了如何利用ST算法进行高效求解。文章不仅提供了详细的代码实现,还分享了作者的实战经验和调试技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:n个数中找到 ai % aj的最大值。
这个RMQ做法是荷姐姐的,太强辣。


题解:先去重,然后将给的n个数插入到1-1000000这个序列中,用ST维护一个数列的最大值。那么对于每个数ai,枚举其倍数,那取到的最大值一定是(ai*j+1,ai*(j+1)-1)这个区间的最大值减去ai*j。
nlogn的预处理+O(1)的查询
然后不知道为什么我的程序挂了= =。只能交g++14过


#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <cstring>
#include <vector>
#include <set>
#include <cmath>
#define LL long long
#define INF 0x3f3f3f3f
#define MOD 1000000007
const int maxn = 1000000 + 5;
using namespace std;
int st[maxn*2][25];
int a[maxn];
int main(){
    int n;
    scanf("%d",&n);
    for(int i=0; i<n; i++){
        scanf("%d",&a[i]);
    }
    sort(a,a+n);
    n = unique(a,a+n) - a;
    for(int i=0; i<n; i++)
        st[a[i]][0] = a[i];
    int top = a[n-1];
    for(int j=1; (1<<j)<=top*2; j++)
        for(int i=1; i+(1<<j)-1<=top*2; i++)
            st[i][j] = max(st[i][j-1], st[i+(1<<(j-1))][j-1]);
    int max_ = 0;
    for(int i=0; i<n-1; i++){
        if(a[i] == 1) continue;
        int k = (int)(log((a[i]-1)*1.0)/log(2.0));
        for(int j=a[i]; j<=top; j+=a[i]){
            int ans = max(st[j+1][k],st[j+a[i]-(1<<k)][k]);
            max_ = max(ans-j,max_);
        }
    }
    printf("%d\n",max_);
    return 0;
}

顺带再复习一下RMQ

void init(){
    for(int j=1; (1<<j)<=n; j++)
        for(int i=0; i+(1<<j)-1<n; i++)
            st[i][j] = max(st[i][j-1], st[i+(1<<(j-1))][j-1]);
}
int query(int l, int r){
    int k = (int)(log((r-l+1)*1.0)/log(2.0));// 2^k <= (r-l+1)
    return max(st[l][k], st[r-(1<<k)+1][k]);
}
### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值