微服务容错 Resilience4j 容错原理
4.1 微服务容错简介
在⾼并发访问下,⽐如天猫双11,流量持续不断的涌⼊,服务之间的相互调⽤频率突然增加,引发系统负载过⾼,这时系统所依赖的服务的稳定性对系统的影响⾮常⼤,⽽且还有很多不确定因素引起雪崩,如⽹络连接中断,服务宕机等。⼀般微服务容错组件提供了限流、隔离、降级、熔断等⼿段,可以有效保护我们的微服务系统。
4.1.1 隔离
微服务系统A调⽤B,⽽B调⽤C,这时如果C出现故障,则此时调⽤B的⼤量线程资源阻塞,慢慢的B的线程数量持续增加直到CPU耗尽到100%,整体微服务不可⽤,这时就需要对不可⽤的服务进⾏隔离。
4.1.1.1.线程池隔离
线程池隔离就是通过Java的线程池进⾏隔离,B服务调⽤C服务给予固定的线程数量⽐如12个线程,如果此时C服务宕机了就算⼤量的请求过来,调⽤C服务的接⼝只会占⽤12个线程不会占⽤其他⼯作线程资源,因此B服务就不会出现级联故障。线程池隔离原理,如图4-2所示。

4.1.1.2.信号量隔离
隔离信号量隔离是使⽤Semaphore来实现的,当拿不到信号量的时候直接拒接因此不会出现超时占⽤其他⼯作线程的情况。代码如下。
Semaphore semaphore = new Semaphore(10,true);
//获取信号量
semaphore.acquire();
//do something here
//释放信号量
semaphore.release();

文章详细介绍了微服务在高并发场景下的容错策略,包括线程池隔离、信号量隔离、熔断、降级和限流等原理,以及Resilience4j库在其中的应用,对比了与Hystrix和SpringCloudAlibabaSentinel的关系。
最低0.47元/天 解锁文章
9250

被折叠的 条评论
为什么被折叠?



