LeetCode 64 - Minimum Path Sum

Minimum Path Sum

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

My Code

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size();
        vector<vector<int> > minSum(m, vector<int>(n, 0));

        minSum[0][0] = grid[0][0];
        for (int i = 1; i < m; i++)
            minSum[i][0] = grid[i][0] + minSum[i-1][0];
        for (int j = 0; j < n; j++)
            minSum[0][j] = grid[0][j] + minSum[0][j-1];

        for (int i = 1; i < m; i++)
            for (int j = 1; j < n; j++)
                minSum[i][j] = min(minSum[i-1][j], minSum[i][j-1]) + grid[i][j];

        return minSum[m-1][n-1];
    }
};
Runtime: 33 ms

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EnjoyCodingAndGame

愿我的知识,成为您的财富!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值