二分查找

//二分查找,binary search
//给定一个整数X和整数A0,A1,A2...AN-1,后者已排序(从小到大),求使得Ai=X的下标i,
//如果X不在数据中,则返回-1.
//时间复杂度O(logN),空间复杂度O(1int BinarySearch(int nums[], int n, int x){
    int first, last, mid;
    first = 0;
    last = n - 1;

    //我自己写的,但代码不够简洁
    /*while (first != last){
        mid = (first + last) / 2;
        if (nums[first] <= x && x < nums[mid]){
        last = mid;
        }
        else{
        first = mid + 1;
        }
        }
        if (nums[mid] == x){
        return mid;
        }
        else{
        return -1;
        }*/

    //参照《数据结构与算法分析》,比较简洁明了
    while (first <= last){
        mid = (first + last) / 2;
        if (x < nums[mid]){
            last = mid;
        }
        else if (x>nums[mid]){
            first = mid + 1;
        }
        else{
            return mid;
        }
    }
    return -1;
}


//Search in Rotated Sorted Array

/*描述
Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
*/
//从小到大排序,
/*分析
二分查找,难度主要在于左右边界的确定。
*/
//时间复杂度O(logN),空间复杂度O(1).
int Search(int nums[], int n, int x){
    int first, last, mid;
    first = 0;
    last = n - 1;
    while (first <= last){
        mid = (first + last) / 2;
        if (x == nums[mid]){
            return mid;
        }

        if (nums[first] <= nums[mid]){
            //first部分没有rotate(分析错误)
            //first 到 Mid 递增,
            if (nums[first]<=x && x < nums[mid]){
                last = mid;
            }
            else{
                first = mid + 1;
            }
        }
        else{
            //nums[first]>nums[mid]
            //first是从后面rotate来的,mid到last递增。
            if (nums[mid] < x && x <= nums[last - 1]){
                first = mid + 1;
            }
            else{
                last = mid;
            }
        }
    }
    return -1;
}


/*Search in Rotated Sorted Array II*/
/*
描述
Follow up for ”Search in Rotated Sorted Array”: What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given target is in the array.
*/
//时间复杂度O(n),空间复杂度O(1).
bool Search2(int nums[], int n, int x){
    int first, last, mid;
    first = 0;
    last = n - 1;
    while (first <= last){
        mid = (first + last) / 2;
        if (x == nums[mid]){
            return true;
        }
        else{
            if (nums[first] < nums[mid]){
                //first to mid is 递增
                if (nums[first] <= x && x < nums[mid]){
                    last = mid;
                }
                else{
                    first = mid + 1;
                }
            }
            else if (nums[first]>nums[mid]){
                //mid to last is 递增
                if (nums[mid] < x && x <= nums[last]){
                    first = mid + 1;
                }
                else{
                    last = mid;
                }
            }
            else{
                //nums[first]=nums[mid]
                //first 有重复,skip duplicate one
                first++;
            }
        }
    }
    return false;
}
资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 在 Linux 系统中,查找域名或主机名对应的 IP 地址是网络管理中的一项基础且关键任务,对于排查网络故障、调试网络问题以及监控网络服务是否正常运行等场景都常重要。本文将介绍五种在 Linux 终端查询域名 IP 地址的方法。 首先,dig 命令(全称 Domain Information Groper)是一个功能强大的 DNS 查询工具,能够向 DNS 服务器发送查询请求获取详细的响应信息。如果需要查询单个域名的 IP 地址,可以使用命令 dig 2daygeek.com +short 。此外,还可以通过编写 bash 脚本,将包含域名的文本文件中的域名逐个读取,然后利用 dig 命令进行查询,从而实现批量查询域名 IP 地址的功能。 其次,host 命令是一个简单易用的 DNS 查询工具,主要用于将域名解析为 IP 地址。要获取某个域名的 IP 地址,直接使用 host 2daygeek.com 即可。如果只想显示 IP 地址部分,可以通过管道结合 grep 和 sed 命令来实现,例如:host 2daygeek.com | grep "has address" | sed s/has address/-/g 。 再者,nslookup 命令也是一种常用的 DNS 查询工具,它支持交互式查询 DNS 信息。通过 nslookup 2daygeek.com 可以查询域名的 IP 地址。若要以交互式的方式只显示 IP 地址,可以使用命令 nslookup 2daygeek.com | awk /^Address:/ {print $2} 。 另外,fping 命令与传统的 ping 命令不同,它不会直接进行 DNS 查询,而是通过发送 ICMP Echo Request(pi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值