网上总是说将VGG输出的featrue map作为回归检测,预测目标的xy坐标非常难,也非常差,那有多差呢?
在PET数据集上测试,结果如图,平均IOU=46.0%
from keras.layers import Dense, Activation, Flatten, Convolution2D, Dropout, MaxPooling2D
from keras.optimizers import SGD, Adadelta, Adagrad
from keras.models import Sequential
import numpy as np
import tensorflow as tf
from keras import backend as K
from PIL import Image
import matplotlib.pyplot as plt
# 固定随机种子
np.random.seed(42)
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
tf.set_random_seed(42)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
def show_numpy_images(np_array_image,pred_y=None,true_y=None):
plt.figure(figsize=(8, 8))
for im in range(28):
plt.subplot(4, 7, im + 1)
image = np_array_image[im, :, :, :]
if true_y is