Days ago, I met the error, training loss goes to be “nan” in tensorflow. Payed some effort, I found the cause of this error. In my case, It was I fed the wrong label to the network caused that error. In the wrong labeled scenario, no matter the direction the network going in training, there are wrongs and maybe more wrongs in prediction.
If you come across the “nan” error in tensorflow, you may need to check the training date you fed in the network first. If there is nothing wrong, go for other investigations.
"nan" error in tensorflow
最新推荐文章于 2023-07-24 15:32:56 发布
本文介绍了一种常见的TensorFlow训练错误——训练损失变为NaN的原因及解决方法。作者通过排查发现,错误根源在于输入了错误的标签数据,导致网络无论怎样调整参数都无法得到正确的预测结果。
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
TensorFlow-v2.15
TensorFlow
TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型
4053

被折叠的 条评论
为什么被折叠?



