"nan" error in tensorflow

本文介绍了一种常见的TensorFlow训练错误——训练损失变为NaN的原因及解决方法。作者通过排查发现,错误根源在于输入了错误的标签数据,导致网络无论怎样调整参数都无法得到正确的预测结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Days ago, I met the error, training loss goes to be “nan” in tensorflow. Payed some effort, I found the cause of this error. In my case, It was I fed the wrong label to the network caused that error. In the wrong labeled scenario, no matter the direction the network going in training, there are wrongs and maybe more wrongs in prediction.
If you come across the “nan” error in tensorflow, you may need to check the training date you fed in the network first. If there is nothing wrong, go for other investigations.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值