“既生 ExecutorService, 何生 CompletionService?”

本文深入解析CompletionService的工作原理,对比ExecutorService,展示如何利用CompletionService优化任务执行流程,获取最快结果,适用于高并发场景。

前言

我会手动创建线程,为什么要使用线程池? 中详细的介绍了 ExecutorService,可以将整块任务拆分做简单的并行处理;

不会用Java Future,我怀疑你泡茶没我快 中又详细的介绍了 Future 的使用,填补了 Runnable 不能获取线程执行结果的空缺

将二者结合起来使用看似要一招吃天下了(Java有并发,并发之大,一口吃不下), but ~~ 是我太天真

ExecutorService VS CompletionService

假设我们有 4 个任务(A, B, C, D)用来执行复杂的计算,每个任务的执行时间随着输入参数的不同而不同,如果将任务提交到 ExecutorService, 相信你已经可以“信手拈来”

ExecutorService executorService = Executors.newFixedThreadPool(4);
List<Future> futures = new ArrayList<Future<Integer>>();
futures.add(executorService.submit(A));
futures.add(executorService.submit(B));
futures.add(executorService.submit(C));
futures.add(executorService.submit(D));

// 遍历 Future list,通过 get() 方法获取每个 future 结果
for (Future future:futures) {
    Integer result = future.get();
    // 其他业务逻辑
}

先直入主题,用 CompletionService 实现同样的场景

ExecutorService executorService = Executors.newFixedThreadPool(4);

// ExecutorCompletionService 是 CompletionService 唯一实现类
CompletionService executorCompletionService= new ExecutorCompletionService<>(executorService );

List<Future> futures = new ArrayList<Future<Integer>>();
futures.add(executorCompletionService.submit(A));
futures.add(executorCompletionService.submit(B));
futures.add(executorCompletionService.submit(C));
futures.add(executorCompletionService.submit(D));

// 遍历 Future list,通过 get() 方法获取每个 future 结果
for (int i=0; i<futures.size(); i++) {
    Integer result = executorCompletionService.take().get();
    // 其他业务逻辑
}

两种方式在代码实现上几乎一毛一样,我们曾经说过 JDK 中不会重复造轮子,如果要造一个新轮子,必定是原有的轮子在某些场景的使用上有致命缺陷

既然新轮子出来了,二者到底有啥不同呢? 在

【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究(Matlab代码实现)内容概要:本文围绕【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究展开,重点介绍基于Matlab的代码实现方法。文章系统阐述了遍历理论的基本概念、动态模态分解(DMD)的数学原理及其与库普曼算子谱特性之间的内在联系,展示了如通过数值计算手段分析非线性动力系统的演化行为。文中提供了完整的Matlab代码示例,涵盖数据驱动的模态分解、谱分析及可视化过程,帮助读者理解并复现相关算法。同时,文档还列举了多个相关的科研方向和技术应用场景,体现出该方法在复杂系统建模与分析中的广泛适用性。; 适合人群:具备一定动力系统、线性代数与数值分析基础,熟悉Matlab编程,从事控制理论、流体力学、信号处理或数据驱动建模等领域研究的研究、博士及科研人员。; 使用场景及目标:①深入理解库普曼算子理论及其在非线性系统分析中的应用;②掌握动态模态分解(DMD)算法的实现与优化;③应用于流体动力学、气候建模、物系统、电力系统等领域的时空模态提取与预测;④支撑高水平论文复现与科研项目开发。; 阅读建议:建议读者结合Matlab代码逐段调试运行,对照理论推导加深理解;推荐参考文中提及的相关研究方向拓展应用场景;鼓励在实际数据上验证算法性能,并尝试改进与扩展算法功能。
本系统采用微信小程序作为前端交互界面,结合Spring Boot与Vue.js框架实现后端服务及管理后台的构建,形成一套完整的电子商务解决方案。该系统架构支持单一商户独立运营,亦兼容多商户入驻的平台模式,具备高度的灵活性与扩展性。 在技术实现上,后端以Java语言为核心,依托Spring Boot框架提供稳定的业务逻辑处理与数据接口服务;管理后台采用Vue.js进行开发,实现了直观高效的操作界面;前端微信小程序则为用户提供了便捷的移动端购物体验。整套系统各模块间紧密协作,功能链路完整闭环,已通过严格测试与优化,符合商业应用的标准要求。 系统设计注重业务场景的全面覆盖,不仅包含商品展示、交易流程、订单处理等核心电商功能,还集成了会员管理、营销工具、数据统计等辅助模块,能够满足不同规模商户的日常运营需求。其多店铺支持机制允许平台方对入驻商户进行统一管理,同时保障各店铺在品牌展示、商品销售及客户服务方面的独立运作空间。 该解决方案强调代码结构的规范性与可维护性,遵循企业级开发标准,确保了系统的长期稳定运行与后续功能迭代的可行性。整体而言,这是一套技术选型成熟、架构清晰、功能完备且可直接投入商用的电商平台系统。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值