“既生 ExecutorService, 何生 CompletionService?”

本文深入解析CompletionService的工作原理,对比ExecutorService,展示如何利用CompletionService优化任务执行流程,获取最快结果,适用于高并发场景。

前言

我会手动创建线程,为什么要使用线程池? 中详细的介绍了 ExecutorService,可以将整块任务拆分做简单的并行处理;

不会用Java Future,我怀疑你泡茶没我快 中又详细的介绍了 Future 的使用,填补了 Runnable 不能获取线程执行结果的空缺

将二者结合起来使用看似要一招吃天下了(Java有并发,并发之大,一口吃不下), but ~~ 是我太天真

ExecutorService VS CompletionService

假设我们有 4 个任务(A, B, C, D)用来执行复杂的计算,每个任务的执行时间随着输入参数的不同而不同,如果将任务提交到 ExecutorService, 相信你已经可以“信手拈来”

ExecutorService executorService = Executors.newFixedThreadPool(4);
List<Future> futures = new ArrayList<Future<Integer>>();
futures.add(executorService.submit(A));
futures.add(executorService.submit(B));
futures.add(executorService.submit(C));
futures.add(executorService.submit(D));

// 遍历 Future list,通过 get() 方法获取每个 future 结果
for (Future future:futures) {
    Integer result = future.get();
    // 其他业务逻辑
}

先直入主题,用 CompletionService 实现同样的场景

ExecutorService executorService = Executors.newFixedThreadPool(4);

// ExecutorCompletionService 是 CompletionService 唯一实现类
CompletionService executorCompletionService= new ExecutorCompletionService<>(executorService );

List<Future> futures = new ArrayList<Future<Integer>>();
futures.add(executorCompletionService.submit(A));
futures.add(executorCompletionService.submit(B));
futures.add(executorCompletionService.submit(C));
futures.add(executorCompletionService.submit(D));

// 遍历 Future list,通过 get() 方法获取每个 future 结果
for (int i=0; i<futures.size(); i++) {
    Integer result = executorCompletionService.take().get();
    // 其他业务逻辑
}

两种方式在代码实现上几乎一毛一样,我们曾经说过 JDK 中不会重复造轮子,如果要造一个新轮子,必定是原有的轮子在某些场景的使用上有致命缺陷

既然新轮子出来了,二者到底有啥不同呢? 在

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值