离线数仓—DWS层数据装载脚本
前言
前面完成了DWS层所有表的设计和开发,为了方便使用,准备一下数据装载的脚本。
一、DWS最近1日汇总表
1.首日装载脚本
脚本名称:dwd_to_dws_1d_init.sh
脚本内容:
#!/bin/bash
APP=gmall
if [ -n "$2" ] ;then
do_date=$2
else
echo "请传入日期参数"
exit
fi
dws_trade_province_order_1d="
insert overwrite table ${APP}.dws_trade_province_order_1d partition(dt)
select
province_id,
province_name,
area_code,
iso_code,
iso_3166_2,
order_count_1d,
order_original_amount_1d,
activity_reduce_amount_1d,
coupon_reduce_amount_1d,
order_total_amount_1d,
dt
from
(
select
province_id,
count(distinct(order_id)) order_count_1d,
sum(split_original_amount) order_original_amount_1d,
sum(nvl(split_activity_amount,0)) activity_reduce_amount_1d,
sum(nvl(split_coupon_amount,0)) coupon_reduce_amount_1d,
sum(split_total_amount) order_total_amount_1d,
dt
from ${APP}.dwd_trade_order_detail_inc
group by province_id,dt
)o
left join
(
select
id,
province_name,
area_code,
iso_code,
iso_3166_2
from ${APP}.dim_province_full
where dt='$do_date'
)p
on o.province_id=p.id;
"
dws_trade_user_cart_add_1d="
insert overwrite table ${APP}.dws_trade_user_cart_add_1d partition(dt)
select
user_id,
count(*),
sum(sku_num),
dt
from ${APP}.dwd_trade_cart_add_inc
group by user_id,dt;
"
dws_trade_user_order_1d="
insert overwrite table ${APP}.dws_trade_user_order_1d partition(dt)
select
user_id,
count(distinct(order_id)),
sum(sku_num),
sum(split_original_amount),
sum(nvl(split_activity_amount,0)),
sum(nvl(split_coupon_amount,0)),
sum(split_total_amount),
dt
from ${APP}.dwd_trade_order_detail_inc
group by user_id,dt;
"
dws_trade_user_order_refund_1d="
insert overwrite table ${APP}.dws_trade_user_order_refund_1d partition(dt)
select
user_id,
count(*) order_refund_count,
sum(refund_num) order_refund_num,
sum(refund_amount) order_refund_amount,
dt
from ${APP}.dwd_trade_order_refund_inc
group by user_id,dt;
"
dws_trade_user_payment_1d="
insert overwrite table ${APP}.dws_trade_user_payment_1d partition(dt)
select
user_id,
count(distinct(order_id)),
sum(sku_num),
sum(split_payment_amount),
dt
from ${APP}.dwd_trade_pay_detail_suc_inc
group by user_id,dt;
"
dws_trade_user_sku_order_1d="
insert overwrite table ${APP}.dws_trade_user_sku_order_1d partition(dt)
select
user_id,
id,
sku_name,
category1_id,
category1_name,
category2_id,
category2_name,
category3_id,
category3_name,
tm_id,
tm_name,
order_count_1d,
order_num_1d,
order_original_amount_1d,
activity_reduce_amount_1d,
coupon_reduce_amount_1d,
order_total_amount_1d,
dt
from
(
select
dt,
user_id,
sku_id,
count(*) order_count_1d,
sum(sku_num) order_num_1d,
sum(split_original_amount) order_original_amount_1d,
sum(nvl(split_activity_amount,0.0)) activity_reduce_amount_1d,
sum(nvl(split_coupon_amount,0.0)) coupon_reduce_amount_1d,
sum(split_total_amount) order_total_amount_1d
from ${APP}.dwd_trade_order_detail_inc
group by dt,user_id,sku_id
)od
left join
(
select
id,
sku_name,
category1_id,
category1_name,
category2_id,
category2_name,
category3_id,
category3_name,
tm_id,
tm_name
from ${APP}.dim_sku_full
where dt='$do_date'
)sku
on od.sku_id=sku.id;
"
dws_trade_user_sku_order_refund_1d="
insert overwrite table ${APP}.dws_trade_user_sku_order_refund_1d partition(dt)
select
user_id,
sku_id,
sku_name,
category1_id,
category1_name,
category2_id,
category2_name,
category3_id,
category3_name,
tm_id,
tm_name,
order_refund_count,
order_refund_num,
order_refund_amount,
dt
from
(
select
dt,
user_id,
sku_id,
count(*) order_refund_count,
sum(refund_num) order_refund_num,
sum(refund_amount) order_refund_amount
from ${APP}.dwd_trade_order_refund_inc
group by dt,user_id,sku_id
)od
left join
(
select
id,
sku_name,
category1_id,
category1_name,
category2_id,
category2_name,
category3_id,
category3_name,
tm_id,
tm_name
from ${APP}.dim_sku_full
where dt='$do_date'
)sku
on od.sku_id=sku.id;
"
dws_traffic_page_visitor_page_view_1d="
insert overwrite table ${APP}.dws_traffic_page_visitor_page_view_1d partition(dt='$do_date')
select
mid_id,
brand,
model,
operate_system,
page_id,
sum(during_time),
count(*)
from ${APP}.dwd_traffic_page_view_inc
where dt='$do_date'
group by mid_id,brand,model,operate_system,page_id;
"
dws_traffic_session_page_view_1d="
insert overwrite table ${APP}.dws_traffic_session_page_view_1d partition(dt='$do_date')
select
session_id,
mid_id,
brand,
model,
operate_system,
version_code,
channel,
sum(during_time),
count(*)
from ${APP}.dwd_traffic_page_view_inc
where dt='$do_date'
group by session_id,mid_id,brand,model,operate_system,version_code,channel;
"
case $1 in
"dws_trade_province_order_1d" )
hive -e "$dws_trade_province_order_1d"
;;
"dws_trade_user_cart_add_1d" )
hive -e "$dws_trade_user_cart_add_1d"
;;
"dws_trade_user_order_1d" )
hive -e "$dws_trade_user_order_1d"
;;
"dws_trade_user_order_refund_1d" )
hive -e "$dws_trade_user_order_refund_1d"
;;
"dws_trade_user_payment_1d" )
hive -e "$dws_trade_user_payment_1d"
;;
"dws_trade_user_sku_order_1d" )
hive -e "$dws_trade_user_sku_order_1d"
;;
"dws_trade_user_sku_order_refund_1d" )
hive -e "$dws_trade_user_sku_order_refund_1d"
;;
"dws_traffic_page_visitor_page_view_1d" )
hive -e "$dws_traffic_page_visitor_page_view_1d"
;;
"dws_traffic_session_page_view_1d" )
hive -e "$dws_traffic_session_page_view_1d"
;;
"all" )
hive -e "$dws_trade_province_order_1d$dws_trade_user_cart_add_1d$dws_trade_user_order_1d$dws_trade_user_order_refund_1d$dws_trade_user_payment_1d$dws_trade_user_sku_order_1d$dws_trade_user_sku_order_refund_1d$dws_traffic_page_visitor_page_view_1d$dws_traffic_session_page_view_1d"
;;
esac
2.每日装载脚本
#!/bin/bash
APP=gmall
# 如果输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
dws_trade_province_order_1d="
insert overwrite table ${APP}.dws_trade_province_order_1d partition(dt='$do_date')
select
province_id,
province_name,
area_code,
iso_code,
iso_3166_2,
order_count_1d,
order_original_amount_1d,
activity_reduce_amount_1d,
coupon_reduce_amount_1d,
order_total_amount_1d
from
(
select
province_id,
count(distinct(order_id)) order_count_1d,
sum(split_original_amount) order_original_amount_1d,
sum(nvl(split_activity_amount,0)) activity_reduce_amount_1d,
sum(nvl(split_coupon_amount,0)) coupon_reduce_amount_1d,
sum(split_total_amount) order_total_amount_1d
from ${APP}.dwd_trade_order_detail_inc
where dt='$do_date'
group by province_id
)o
left join
(
select
id,
province_name,
area_code,
iso_code,
iso_3166_2
from ${APP}.dim_province_full
where dt='$do_date'
)p
on o.province_id=p.id;
"
dws_trade_user_cart_add_1d="
insert overwrite table ${APP}.dws_trade_user_cart_add_1d partition(dt='$do_date')
select
user_id,
count(*),
sum(sku_num)
from ${APP}.dwd_trade_cart_add_inc
where dt='$do_date'
group by user_id;
"
dws_trade_user_order_1d="
insert overwrite table ${APP}.dws_trade_user_order_1d partition(dt='$do_date')
select
user_id,
count(distinct(order_id)),
sum(sku_num),
sum(split_original_amount),
sum(nvl(split_activity_amount,0)),
sum(nvl(split_coupon_amount,0)),
sum(split_total_amount)
from ${APP}.dwd_trade_order_detail_inc
where dt='$do_date'
group by user_id;
"
dws_trade_user_order_refund_1d="
insert overwrite table ${APP}.dws_trade_user_order_refund_1d partition(dt='$do_date')
select
user_id,
count(*),
sum(refund_num),
sum(refund_amount)
from ${APP}.dwd_trade_order_refund_inc
where dt='$do_date'
group by user_id;
"
dws_trade_user_payment_1d="
insert overwrite table ${APP}.dws_trade_user_payment_1d partition(dt='$do_date')
select
user_id,
count(distinct(order_id)),
sum(sku_num),
sum(split_payment_amount)
from ${APP}.dwd_trade_pay_detail_suc_inc
where dt='$do_date'
group by user_id;
"
dws_trade_user_sku_order_1d="
insert overwrite table ${APP}.dws_trade_user_sku_order_1d partition(dt='$do_date')
select
user_id,
id,
sku_name,
category1_id,
category1_name,
category2_id,
category2_name,
category3_id,
category3_name,
tm_id,
tm_name,
order_count,
order_num,
order_original_amount,
activity_reduce_amount,
coupon_reduce_amount,
order_total_amount
from
(
select
user_id,
sku_id,
count(*) order_count,
sum(sku_num) order_num,
sum(split_original_amount) order_original_amount,
sum(nvl(split_activity_amount,0)) activity_reduce_amount,
sum(nvl(split_coupon_amount,0)) coupon_reduce_amount,
sum(split_total_amount) order_total_amount
from ${APP}.dwd_trade_order_detail_inc
where dt='$do_date'
group by user_id,sku_id
)od
left join
(
select
id,
sku_name,
category1_id,
category1_name,
category2_id,
category2_name,
category3_id,
category3_name,
tm_id,
tm_name
from ${APP}.dim_sku_full
where dt='$do_date'
)sku
on od.sku_id=sku.id;
"
dws_trade_user_sku_order_refund_1d="
insert overwrite table ${APP}.dws_trade_user_sku_order_refund_1d partition(dt='$do_date')
select
user_id,
sku_id,
sku_name,
category1_id,
category1_name,
category2_id,
category2_name,
category3_id,
category3_name,
tm_id,
tm_name,
order_refund_count,
order_refund_num,
order_refund_amount
from
(
select
user_id,
sku_id,
count(*) order_refund_count,
sum(refund_num) order_refund_num,
sum(refund_amount) order_refund_amount
from ${APP}.dwd_trade_order_refund_inc
where dt='$do_date'
group by user_id,sku_id
)od
left join
(
select
id,
sku_name,
category1_id,
category1_name,
category2_id,
category2_name,
category3_id,
category3_name,
tm_id,
tm_name
from ${APP}.dim_sku_full
where dt='$do_date'
)sku
on od.sku_id=sku.id;
"
dws_traffic_page_visitor_page_view_1d="
insert overwrite table ${APP}.dws_traffic_page_visitor_page_view_1d partition(dt='$do_date')
select
mid_id,
brand,
model,
operate_system,
page_id,
sum(during_time),
count(*)
from ${APP}.dwd_traffic_page_view_inc
where dt='$do_date'
group by mid_id,brand,model,operate_system,page_id;
"
dws_traffic_session_page_view_1d="
insert overwrite table ${APP}.dws_traffic_session_page_view_1d partition(dt='$do_date')
select
session_id,
mid_id,
brand,
model,
operate_system,
version_code,
channel,
sum(during_time),
count(*)
from ${APP}.dwd_traffic_page_view_inc
where dt='$do_date'
group by session_id,mid_id,brand,model,operate_system,version_code,channel;
"
case $1 in
"dws_trade_province_order_1d" )
hive -e "$dws_trade_province_order_1d"
;;
"dws_trade_user_cart_add_1d" )
hive -e "$dws_trade_user_cart_add_1d"
;;
"dws_trade_user_order_1d" )
hive -e "$dws_trade_user_order_1d"
;;
"dws_trade_user_order_refund_1d" )
hive -e "$dws_trade_user_order_refund_1d"
;;
"dws_trade_user_payment_1d" )
hive -e "$dws_trade_user_payment_1d"
;;
"dws_trade_user_sku_order_1d" )
hive -e "$dws_trade_user_sku_order_1d"
;;
"dws_trade_user_sku_order_refund_1d" )
hive -e "$dws_trade_user_sku_order_refund_1d"
;;
"dws_traffic_page_visitor_page_view_1d" )
hive -e "$dws_traffic_page_visitor_page_view_1d"
;;
"dws_traffic_session_page_view_1d" )
hive -e "$dws_traffic_session_page_view_1d"
;;
"all" )
hive -e "$dws_trade_province_order_1d$dws_trade_user_cart_add_1d$dws_trade_user_order_1d$dws_trade_user_order_refund_1d$dws_trade_user_payment_1d$dws_trade_user_sku_order_1d$dws_trade_user_sku_order_refund_1d$dws_traffic_page_visitor_page_view_1d$dws_traffic_session_page_view_1d"
;;
esac
代码如下(示例):
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
二、DWS最近n日汇总表
1.数据装载脚本
最近n日汇总表不需要区分首日装载和每日装载。
脚本名称:dws_1d_to_dws_nd.sh
脚本内容:
#!/bin/bash
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
dws_trade_activity_order_nd="
insert overwrite table ${APP}.dws_trade_activity_order_nd partition(dt='$do_date')
select
act.activity_id,
activity_name,
activity_type_code,
activity_type_name,
date_format(start_time,'yyyy-MM-dd'),
sum(split_original_amount),
sum(split_activity_amount)
from
(
select
activity_id,
activity_name,
activity_type_code,
activity_type_name,
start_time
from ${APP}.dim_activity_full
where dt='$do_date'
and date_format(start_time,'yyyy-MM-dd')>=date_add('$do_date',-29)
group by activity_id, activity_name, activity_type_code, activity_type_name,start_time
)act
left join
(
select
activity_id,
order_id,
split_original_amount,
split_activity_amount
from ${APP}.dwd_trade_order_detail_inc
where dt>=date_add('$do_date',-29)
and dt<='$do_date'
and activity_id is not null
)od
on act.activity_id=od.activity_id
group by act.activity_id,activity_name,activity_type_code,activity_type_name,start_time;
"
dws_trade_coupon_order_nd="
insert overwrite table ${APP}.dws_trade_coupon_order_nd partition(dt='$do_date')
select
id,
coupon_name,
coupon_type_code,
coupon_type_name,
benefit_rule,
start_date,
sum(split_original_amount),
sum(split_coupon_amount)
from
(
select
id,
coupon_name,
coupon_type_code,
coupon_type_name,
benefit_rule,
date_format(start_time,'yyyy-MM-dd') start_date
from ${APP}.dim_coupon_full
where dt='$do_date'
and date_format(start_time,'yyyy-MM-dd')>=date_add('$do_date',-29)
)cou
left join
(
select
coupon_id,
order_id,
split_original_amount,
split_coupon_amount
from ${APP}.dwd_trade_order_detail_inc
where dt>=date_add('$do_date',-29)
and dt<='$do_date'
and coupon_id is not null
)od
on cou.id=od.coupon_id
group by id,coupon_name,coupon_type_code,coupon_type_name,benefit_rule,start_date;
"
dws_trade_province_order_nd="
insert overwrite table ${APP}.dws_trade_province_order_nd partition(dt='$do_date')
select
province_id,
province_name,
area_code,
iso_code,
iso_3166_2,
sum(if(dt>=date_add('$do_date',-6),order_count_1d,0)),
sum(if(dt>=date_add('$do_date',-6),order_original_amount_1d,0)),
sum(if(dt>=date_add('$do_date',-6),activity_reduce_amount_1d,0)),
sum(if(dt>=date_add('$do_date',-6),coupon_reduce_amount_1d,0)),
sum(if(dt>=date_add('$do_date',-6),order_total_amount_1d,0)),
sum(order_count_1d),
sum(order_original_amount_1d),
sum(activity_reduce_amount_1d),
sum(coupon_reduce_amount_1d),
sum(order_total_amount_1d)
from ${APP}.dws_trade_province_order_1d
where dt>=date_add('$do_date',-29)
and dt<='$do_date'
group by province_id,province_name,area_code,iso_code,iso_3166_2;
"
dws_trade_user_cart_add_nd="
insert overwrite table ${APP}.dws_trade_user_cart_add_nd partition(dt='$do_date')
select
user_id,
sum(if(dt>=date_add('$do_date',-6),cart_add_count_1d,0)),
sum(if(dt>=date_add('$do_date',-6),cart_add_num_1d,0)),
sum(cart_add_count_1d),
sum(cart_add_num_1d)
from ${APP}.dws_trade_user_cart_add_1d
where dt>=date_add('$do_date',-29)
and dt<='$do_date'
group by user_id;
"
dws_trade_user_order_nd="
insert overwrite table ${APP}.dws_trade_user_order_nd partition(dt='$do_date')
select
user_id,
sum(if(dt>=date_add('$do_date',-6),order_count_1d,0)),
sum(if(dt>=date_add('$do_date',-6),order_num_1d,0)),
sum(if(dt>=date_add('$do_date',-6),order_original_amount_1d,0)),
sum(if(dt>=date_add('$do_date',-6),activity_reduce_amount_1d,0)),
sum(if(dt>=date_add('$do_date',-6),coupon_reduce_amount_1d,0)),
sum(if(dt>=date_add('$do_date',-6),order_total_amount_1d,0)),
sum(order_count_1d),
sum(order_num_1d),
sum(order_original_amount_1d),
sum(activity_reduce_amount_1d),
sum(coupon_reduce_amount_1d),
sum(order_total_amount_1d)
from ${APP}.dws_trade_user_order_1d
where dt>=date_add('$do_date',-29)
and dt<='$do_date'
group by user_id;
"
dws_trade_user_order_refund_nd="
insert overwrite table ${APP}.dws_trade_user_order_refund_nd partition(dt='$do_date')
select
user_id,
sum(if(dt>=date_add('$do_date',-6),order_refund_count_1d,0)),
sum(if(dt>=date_add('$do_date',-6),order_refund_num_1d,0)),
sum(if(dt>=date_add('$do_date',-6),order_refund_amount_1d,0)),
sum(order_refund_count_1d),
sum(order_refund_num_1d),
sum(order_refund_amount_1d)
from ${APP}.dws_trade_user_order_refund_1d
where dt>=date_add('$do_date',-29)
and dt<='$do_date'
group by user_id;
"
dws_trade_user_payment_nd="
insert overwrite table ${APP}.dws_trade_user_payment_nd partition (dt = '$do_date')
select user_id,
sum(if(dt >= date_add('$do_date', -6), payment_count_1d, 0)),
sum(if(dt >= date_add('$do_date', -6), payment_num_1d, 0)),
sum(if(dt >= date_add('$do_date', -6), payment_amount_1d, 0)),
sum(payment_count_1d),
sum(payment_num_1d),
sum(payment_amount_1d)
from ${APP}.dws_trade_user_payment_1d
where dt >= date_add('$do_date', -29)
and dt <= '$do_date'
group by user_id;
"
dws_trade_user_sku_order_nd="
insert overwrite table ${APP}.dws_trade_user_sku_order_nd partition(dt='$do_date')
select
user_id,
sku_id,
sku_name,
category1_id,
category1_name,
category2_id,
category2_name,
category3_id,
category3_name,
tm_id,
tm_name,
sum(if(dt>=date_add('$do_date',-6),order_count_1d,0)),
sum(if(dt>=date_add('$do_date',-6),order_num_1d,0)),
sum(if(dt>=date_add('$do_date',-6),order_original_amount_1d,0)),
sum(if(dt>=date_add('$do_date',-6),activity_reduce_amount_1d,0)),
sum(if(dt>=date_add('$do_date',-6),coupon_reduce_amount_1d,0)),
sum(if(dt>=date_add('$do_date',-6),order_total_amount_1d,0)),
sum(order_count_1d),
sum(order_num_1d),
sum(order_original_amount_1d),
sum(activity_reduce_amount_1d),
sum(coupon_reduce_amount_1d),
sum(order_total_amount_1d)
from ${APP}.dws_trade_user_sku_order_1d
where dt>=date_add('$do_date',-30)
group by user_id,sku_id,sku_name,category1_id,category1_name,category2_id,category2_name,category3_id,category3_name,tm_id,tm_name;
"
dws_trade_user_sku_order_refund_nd="
insert overwrite table ${APP}.dws_trade_user_sku_order_refund_nd partition(dt='$do_date')
select
user_id,
sku_id,
sku_name,
category1_id,
category1_name,
category2_id,
category2_name,
category3_id,
category3_name,
tm_id,
tm_name,
sum(if(dt>=date_add('$do_date',-6),order_refund_count_1d,0)),
sum(if(dt>=date_add('$do_date',-6),order_refund_num_1d,0)),
sum(if(dt>=date_add('$do_date',-6),order_refund_amount_1d,0)),
sum(order_refund_count_1d),
sum(order_refund_num_1d),
sum(order_refund_amount_1d)
from ${APP}.dws_trade_user_sku_order_refund_1d
where dt>=date_add('$do_date',-29)
and dt<='$do_date'
group by user_id,sku_id,sku_name,category1_id,category1_name,category2_id,category2_name,category3_id,category3_name,tm_id,tm_name;
"
dws_traffic_page_visitor_page_view_nd="
insert overwrite table ${APP}.dws_traffic_page_visitor_page_view_nd partition(dt='$do_date')
select
mid_id,
brand,
model,
operate_system,
page_id,
sum(if(dt>=date_add('$do_date',-6),during_time_1d,0)),
sum(if(dt>=date_add('$do_date',-6),view_count_1d,0)),
sum(during_time_1d),
sum(view_count_1d)
from ${APP}.dws_traffic_page_visitor_page_view_1d
where dt>=date_add('$do_date',-29)
and dt<='$do_date'
group by mid_id,brand,model,operate_system,page_id;
"
case $1 in
"dws_trade_activity_order_nd" )
hive -e "$dws_trade_activity_order_nd"
;;
"dws_trade_coupon_order_nd" )
hive -e "$dws_trade_coupon_order_nd"
;;
"dws_trade_province_order_nd" )
hive -e "$dws_trade_province_order_nd"
;;
"dws_trade_user_cart_add_nd" )
hive -e "$dws_trade_user_cart_add_nd"
;;
"dws_trade_user_order_nd" )
hive -e "$dws_trade_user_order_nd"
;;
"dws_trade_user_order_refund_nd" )
hive -e "$dws_trade_user_order_refund_nd"
;;
"dws_trade_user_payment_nd" )
hive -e "$dws_trade_user_payment_nd"
;;
"dws_trade_user_sku_order_nd" )
hive -e "$dws_trade_user_sku_order_nd"
;;
"dws_trade_user_sku_order_refund_nd" )
hive -e "$dws_trade_user_sku_order_refund_nd"
;;
"dws_traffic_page_visitor_page_view_nd" )
hive -e "$dws_traffic_page_visitor_page_view_nd"
;;
"all" )
hive -e "$dws_trade_activity_order_nd$dws_trade_coupon_order_nd$dws_trade_province_order_nd$dws_trade_user_cart_add_nd$dws_trade_user_order_nd$dws_trade_user_order_refund_nd$dws_trade_user_payment_nd$dws_trade_user_sku_order_nd$dws_trade_user_sku_order_refund_nd$dws_traffic_page_visitor_page_view_nd"
;;
esac
三、DWS历史至今td汇总表
1.首日数据装载脚本
脚本名称:dws_1d_to_dws_td_init.sh
脚本内容:
#!/bin/bash
APP=gmall
if [ -n "$2" ] ;then
do_date=$2
else
echo "请传入日期参数"
exit
fi
dws_trade_user_order_td="
insert overwrite table ${APP}.dws_trade_user_order_td partition(dt='$do_date')
select
user_id,
min(dt) login_date_first,
max(dt) login_date_last,
sum(order_count_1d) order_count,
sum(order_num_1d) order_num,
sum(order_original_amount_1d) original_amount,
sum(activity_reduce_amount_1d) activity_reduce_amount,
sum(coupon_reduce_amount_1d) coupon_reduce_amount,
sum(order_total_amount_1d) total_amount
from ${APP}.dws_trade_user_order_1d
group by user_id;
"
dws_trade_user_payment_td="
insert overwrite table ${APP}.dws_trade_user_payment_td partition(dt='$do_date')
select
user_id,
min(dt) payment_date_first,
max(dt) payment_date_last,
sum(payment_count_1d) payment_count,
sum(payment_num_1d) payment_num,
sum(payment_amount_1d) payment_amount
from ${APP}.dws_trade_user_payment_1d
group by user_id;
"
dws_user_user_login_td="
insert overwrite table ${APP}.dws_user_user_login_td partition(dt='$do_date')
select
u.id,
nvl(login_date_last,date_format(create_time,'yyyy-MM-dd')),
nvl(login_count_td,1)
from
(
select
id,
create_time
from ${APP}.dim_user_zip
where dt='9999-12-31'
)u
left join
(
select
user_id,
max(dt) login_date_last,
count(*) login_count_td
from ${APP}.dwd_user_login_inc
group by user_id
)l
on u.id=l.user_id;
"
case $1 in
"dws_trade_user_order_td" )
hive -e "$dws_trade_user_order_td"
;;
"dws_trade_user_payment_td" )
hive -e "$dws_trade_user_payment_td"
;;
"dws_user_user_login_td" )
hive -e "$dws_user_user_login_td"
;;
"all" )
hive -e "$dws_trade_user_order_td$dws_trade_user_payment_td$dws_user_user_login_td"
;;
esac
2.每日数据装载脚本
#!/bin/bash
APP=gmall
# 如果输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
dws_trade_user_order_td="
insert overwrite table ${APP}.dws_trade_user_order_td partition(dt='$do_date')
select
nvl(old.user_id,new.user_id),
if(new.user_id is not null and old.user_id is null,'$do_date',old.order_date_first),
if(new.user_id is not null,'$do_date',old.order_date_last),
nvl(old.order_count_td,0)+nvl(new.order_count_1d,0),
nvl(old.order_num_td,0)+nvl(new.order_num_1d,0),
nvl(old.original_amount_td,0)+nvl(new.order_original_amount_1d,0),
nvl(old.activity_reduce_amount_td,0)+nvl(new.activity_reduce_amount_1d,0),
nvl(old.coupon_reduce_amount_td,0)+nvl(new.coupon_reduce_amount_1d,0),
nvl(old.total_amount_td,0)+nvl(new.order_total_amount_1d,0)
from
(
select
user_id,
order_date_first,
order_date_last,
order_count_td,
order_num_td,
original_amount_td,
activity_reduce_amount_td,
coupon_reduce_amount_td,
total_amount_td
from ${APP}.dws_trade_user_order_td
where dt=date_add('$do_date',-1)
)old
full outer join
(
select
user_id,
order_count_1d,
order_num_1d,
order_original_amount_1d,
activity_reduce_amount_1d,
coupon_reduce_amount_1d,
order_total_amount_1d
from ${APP}.dws_trade_user_order_1d
where dt='$do_date'
)new
on old.user_id=new.user_id;
"
dws_trade_user_payment_td="
insert overwrite table ${APP}.dws_trade_user_payment_td partition(dt='$do_date')
select
nvl(old.user_id,new.user_id),
if(old.user_id is null and new.user_id is not null,'$do_date',old.payment_date_first),
if(new.user_id is not null,'$do_date',old.payment_date_last),
nvl(old.payment_count_td,0)+nvl(new.payment_count_1d,0),
nvl(old.payment_num_td,0)+nvl(new.payment_num_1d,0),
nvl(old.payment_amount_td,0)+nvl(new.payment_amount_1d,0)
from
(
select
user_id,
payment_date_first,
payment_date_last,
payment_count_td,
payment_num_td,
payment_amount_td
from ${APP}.dws_trade_user_payment_td
where dt=date_add('$do_date',-1)
)old
full outer join
(
select
user_id,
payment_count_1d,
payment_num_1d,
payment_amount_1d
from ${APP}.dws_trade_user_payment_1d
where dt='$do_date'
)new
on old.user_id=new.user_id;
"
dws_user_user_login_td="
insert overwrite table ${APP}.dws_user_user_login_td partition(dt='$do_date')
select
nvl(old.user_id,new.user_id),
if(new.user_id is null,old.login_date_last,'$do_date'),
nvl(old.login_count_td,0)+nvl(new.login_count_1d,0)
from
(
select
user_id,
login_date_last,
login_count_td
from ${APP}.dws_user_user_login_td
where dt=date_add('$do_date',-1)
)old
full outer join
(
select
user_id,
count(*) login_count_1d
from ${APP}.dwd_user_login_inc
where dt='$do_date'
group by user_id
)new
on old.user_id=new.user_id;
"
case $1 in
"dws_trade_user_order_td" )
hive -e "$dws_trade_user_order_td"
;;
"dws_trade_user_payment_td" )
hive -e "$dws_trade_user_payment_td"
;;
"dws_user_user_login_td" )
hive -e "$dws_user_user_login_td"
;;
"all" )
hive -e "$dws_trade_user_order_td$dws_trade_user_payment_td$dws_user_user_login_td"
;;
esac
本文档详细介绍了离线数仓DWS层的数据装载脚本,包括DWS最近1日汇总表的首日和每日装载脚本,DWS最近n日汇总表的统一装载脚本,以及DWS历史至今td汇总表的首日和每日数据装载过程。
860

被折叠的 条评论
为什么被折叠?



