GDPR到底是如何影响机器学习的?

本文探讨了GDPR(一般数据保护条例)对机器学习的影响,包括GDPR是否禁止机器学习、机器学习模型是否存在解释权以及数据主体能否要求模型在没有其数据的情况下进行训练等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要: GDPR时代来临,你的机器学习模型还能训练吗?

一般数据保护条例(GDPR对数据科学产生了很大的影响。现在GDPR有99条正文条款和173篇声明(Recital),长而复杂,但是随着时间的推移以及条款的执行,它可能会变得更加复杂。同时,由于GDPR的存在,律师和隐私工程师将成为未来大型数据科学项目的核心组成部分。

fb9295e5a1a769172ccc4c670ddd162b8659fd8e

本文主要讨论GDPR与机器学习(ML)之间三个最常见的问题。

1.GDPR是否禁止机器学习?

总的来说,在GDPR生效后,ML不会在欧盟被禁止。

但是,从技术的角度来看,这个问题的答案是肯定的。GDPR作为法律条文,确实做出了对使用自动化决策的全面禁止的规定。当GDPR使用“自动化决策”这个术语时,该法规指的是任何模型都可以在没有人直接参与决策的情况下做出决定。这可能包括数据主体的自动“概要分析”,例如将其分类为“潜在客户”或“40-50岁男性”等特定组,以确定贷款申请人是否有资格获得贷款。

因此,GDPR对ML模型的产生的影响是在没有人直接参与决策制定的情况下,它们是否可以自动部署。如果可以自动部署,那么在大量的ML模型中这种自动部署的设置将会被默认禁止。尽管有许多律师或数据科学家确实反对过,但参与起草和解释GDPR的欧盟官方工作组还是坚持该项规定

当然,GDPR禁止ML也有例外情况。简单来说,该法规确定了使用自主决策合法的三个领域:合同处理的必要性,其他法律另行授权的情况,或数据主体明确同意的情况。

但是,让用户同意并不容易,用户可以同意许多不同类型的数据处理,并且他们也可以在任何时候撤销同意,这意味着用户同意需要细化和进一步的规范。

那么,GDPR是否真的禁止使用ML模型?当然不是,但在许多应用ML的例子中,它使得这些模型及其输入数据的部署和管理变得越来越困难。

2. ML有没有“解释权”

作者去年写了一篇专门讨论这个问题的文章。潜在的解释能力的存在可能会对数据科学产生巨大的影响,因为ML模型的预测能力很大程度上很难解释,即使有可能,也很难解释

在GDPR的第13-15条中反复声明,数据主体有权获得“有关所涉逻辑的有意义的信息”以及自动决策的“重要性和设想的后果”。然后,在GDPR的第22条中规定,数据主体有权利不受上述影响类型的影响。最后,作为该条例中包含的一项非约束性评论的一部分,第71条声明(Recital)表示,数据主体除了能够对这些决定提出质疑之外,还有权对自动决策做出解释。综上所述,这三项规定在数据主体和处理数据的模型之间创建了许多新的复杂的义务,这表明了一种相当强大的可解释性权利。

虽然理论上,欧盟监管机构可以以最严格的方式解释这些条款,但是现实中要想实现充分合理解释似乎是不可能的。欧盟监管机构甚至可以将这些条款解读为,当ML被用于在没有人为干预的情况下做出决定时,以及当这些决定对数据主体产生重大影响时,这些人有权获得关于正在发生的事情的一些基本形式的信息。在GDPR中被称为“有意义的信息”和“设想的后果”可能会在此背景下被读出。欧盟监管机构可能会将注意力集中在一个数据主体上,该数据主体基于有关模型的信息和其部署的上下文的相关信息,对数据的使用做出明智的决定。

3. 数据主体是否有能力要求模型在没有数据的情况下进行训练?

作者认为在实践中答案是否定的。在GDPR下,所有数据的使用都需要有法律依据,《条例》第6条规定了六个相应的依据。最重要的两个是“合法利益”的基础,以及用户明确同意使用该数据的地方。当处理的法律基础是后者时,数据主体将会保留对这些数据的极大控制权,也就是说,他们可以在任何时候撤销,而处理这些数据的法律依据将不再存在。

因此,如果一个组织从一个数据主体收集数据,用户同意将他们的数据用于训练一个特定模型,然后数据主体随后撤回该同意,那么用户何时可以强制模型重新训练新数据呢?

只有当该模型继续使用该用户的数据时,答案才会出现。正如GDPR的29条规定的那样,即使撤销同意后,撤回之前所发生的所有处理仍然合法。因此,如果这些数据被合法的用于创建模型或预测,那么这些数据所产生的任何东西都可能被保留下来。在实践中,一旦用一组训练数据创建了一个模型,训练数据就可以在不影响模型的情况下被删除或修改。

然而,从技术上讲,一些研究表明,模型可能会保留关于训练数据的信息,即使在训练数据被删除之后,这些信息仍然可能被发现,正如研究人员Nicolas Papernot等人所写的那样。这意味着,在某些情况下,在不重新训练模型的情况下删除数据不能保证训练数据不会被重新发现,或者不能保证原始数据不会被继续使用。

但是训练数据通过模型被重新发现几乎是不可能的。作者认为,这种重新发现只是在学术环境中进行的,与企业数据科学家的日常相差甚远。尽管这在理论上是有可能的,但这似乎是一个边缘案例,监管者和数据科学家只有在这种特定类型的实例变得更加现实的情况下才能解决这个问题。

数十款阿里云产品限时折扣中,赶紧点击领券开始云上实践吧!

本文由北邮@爱可可-爱生活 老师推荐,阿里云云栖社区组织翻译。

文章原标题《how-will-the-gdpr-impact-machine-learning》

作者:Andrew Burt

译者:乌拉乌拉,审校:袁虎。

文章为简译,更为详细的内容,请查看原文文章

点击打开链接
该提案的目的是分析算法在涉及具有法律相关性的主观立场的自动决策程序中的使用。 在这方面,GDPR 第 22 条第一款题为“与自然人相关的自动决策,包括分析”规定:“数据主体有权不接受仅基于自动处理的决策,包括剖析,这会产生与他有关或显着影响他个人的法律效力”。 这一规范引发了关于通过算法制定决策的本质的重要问题。 在假设中,“决定”概念的法律性质或法律效果可能仅限于财务偿付能力、机动车事故的可预测性等情况。 在这些情况下,“解释权”是指获得的算法决策。 出于本摘要的目的,考虑到 GDPR 在欧盟所有国家/地区的有效性,可能会引起比较司法争议的最有趣的因素涉及 par. 第 22 条第 2 款 a) 和 c) 项,其中提到了实施“适当措施”以保护“利害关系方的权利、自由和合法利益”。用于实施此类措施的“适当”对应物是什么?措施?似乎毫无疑问,唯一能够满足这种“适当性”的因素是人为干预,即具有必要的权力、能力和能力来修改或修改用户有争议的决定的人。另一个权威来源声称这种适当的措施也可能包括控制算法的自动化系统,即定期审查,引入验证决策过程准确性或纠正错误、歧视问题或过时数据库不准确的程序,以避免自我学习算法基于错误的数据和过程。然而,有些人对解释权的有效性表示困惑尤其是在解释 GDPR 本身中设想它的立法段落时遇到的困难,以及对这一解释权的强制性性质的怀疑。 本文重点阐述了 GDPR 第 22 条规定的解释权的含义,以便利害关系方了解该决定的原因并可能对其提出异议。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值