蚂蚁金服西亭:智能金融的技术挑战与方案

本文介绍了智能技术在金融服务领域的应用场景,如风控、支付等。针对传统风控技术的不足,采用机器学习方法,如GBDT+DNN,提升了10%的检测率。此外,还介绍了Structure2vec深度网络技术在垃圾账户识别中的应用,有效降低了后端风险。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下为精彩视频整理:

目前智能技术场景应用的越来越多,比如微贷,保险,支付,风控,财富等等,对金融服务也提出了更多的挑战,比如:时间敏感,海量数据,业务多样性,系统风险性,强安全,自动化等。在图像/语音、NLP、机器学习、推理与决策等领域,应用强化学习、无监督学习、图推理、迁移学习等技术,在大规模数据的情况下,期望实现快速处理和实时对抗。

深度学习+图:系统性风险预测与监控

对于用户资金的安全,需要在用户账号、设备和商户三端来进行保障。传统的风控技术是基于规则和策略来实现。随着案例增多,加的规则也越来越多,传统的模型较难符合当前的需求。蚂蚁金服是采用树模型对于非可信交易进一步判断是否账号被盗。同时采用GBDT+DNN进一步改进盗账号模型,目前提升了10%检测率。以支付宝为例,每天可以让一千多万笔交易更快更准地通过风险检查。这对系统本身、公司成本、用户安全感的提升,都非常有利。

下面介绍图学习模型的另外一个应用案例:垃圾账户识别

业务有关的网络数据,通过Structure2vec深度网络技术(Structure2vec可以根据少量的标注数据,来判断用户是好人还是坏人)对图进行向量化表征,然后根据业务特点优化目标。在用户注册时,利用用户、设备的关联去构建图,并判断账户是否为垃圾账户。这样能对垃圾账户的注册进行防控,降低后端风险基数,稳定大盘指标,极大提高整体的账户质量。与Node2Vec和规则等技术对比,Structure2vec的提升效果较明显。

在一些垃圾邮件中,有些汉字机器不能识别(比如“银行”写成“钅艮”和“彳亍”)。为了尝试解决这个问题,可利用汉字的笔画信息,将这些字拆成单一字,再拆分成笔画,利用ID来表示这些笔画,生成N元笔画信息,进而生成中文词向量。这个方法对词语有较好的识别作用,可以一定程度上处理用户输入的恶意信息,保证内容安全。

阅读原文

内容概要:本文档详细介绍了Analog Devices公司生产的AD8436真均方根-直流(RMS-to-DC)转换器的技术细节及其应用场景。AD8436由三个独立模块构成:轨到轨FET输入放大器、高动态范围均方根计算内核和精密轨到轨输出放大器。该器件不仅体积小巧、功耗低,而且具有广泛的输入电压范围和快速响应特性。文档涵盖了AD8436的工作原理、配置选项、外部组件选择(如电容)、增益调节、单电源供电、电流互感器配置、接地故障检测、三相电源监测等方面的内容。此外,还特别强调了PCB设计注意事项和误差源分析,旨在帮助工程师更好地理解和应用这款高性能的RMS-DC转换器。 适合人群:从事模拟电路设计的专业工程师和技术人员,尤其是那些需要精确测量交流电信号均方根值的应用开发者。 使用场景及目标:①用于工业自动化、医疗设备、电力监控等领域,实现对交流电压或电流的精准测量;②适用于手持式数字万用表及其他便携式仪器仪表,提供高效的单电源解决方案;③在电流互感器配置中,用于检测微小的电流变化,保障电气安全;④应用于三相电力系统监控,优化建立时间和转换精度。 其他说明:为了确保最佳性能,文档推荐使用高质量的电容器件,并给出了详细的PCB布局指导。同时提醒用户关注电介质吸收和泄漏电流等因素对测量准确性的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值