神经网络决策过程可视化:AI眼中马云、马化腾、李彦宏谁最有吸引力?

本文通过使用grad-cam技术探讨了神经网络如何判断图片的吸引力。研究发现,即使未提供明确的人体边界框,模型也能准确地关注到人体部位,尤其是身体而非面部。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

神经网络所学会的“吸引力”是什么?

在判断一张图片是否安全时,神经网络看的是哪些部分?

使用grad-cam,我们探索了模型的预测过程,对于不同类型的图片,包括动作/静态、暴力、吸引力、年龄、种族等等。

很显然,在上面展示的图片中,吸引力模型关注的是身体而非面部。有趣的是,模型在训练过程中没有接触任何明确定义的边界框,但即使如此,仍然学会了定位人体

这个模型使用200k图像做训练,标记由Hive团队完成,一共分为3个类别:有吸引力(hot)、中立(neutral)、没有吸引力。

阅读原文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值