deep learning with R

本文通过具体实例介绍了如何使用R语言中的neuralnet包构建并训练神经网络模型。首先创建了一个简单的数据集并用其训练了一个包含两个隐藏层的神经网络,然后展示了如何利用训练好的模型进行预测并与实际值进行对比。此外还提供了加载并使用Boston数据集进行预处理的方法。

require(RSNNS)
library(neuralnet)
set.seed(2016)
attribute<-as.data.frame(sample(seq(-2,2,length=50),50,replace=F),ncol=1)
response<-attribute^2
data<-cbind(attribute,response)
colnames(data)<-c("attribute","response")
head(data,10)
    attribute   response
1  -1.2653061 1.60099958
2  -1.4285714 2.04081633
3   1.2653061 1.60099958
4  -1.5102041 2.28071637
5  -0.2857143 0.08163265
6  -1.5918367 2.53394419
7   0.2040816 0.04164931
8   1.1020408 1.21449396
9  -2.0000000 4.00000000
10 -1.8367347 3.37359434
fit<-neuralnet(response~attribute,data=data,hidden=c(3,3),threshold = 0.01)
testdata<-as.matrix(sample(seq(-2,2,length=10),10,replace=F),ncol=1)
pred<-compute(fit,testdata)
result<-cbind(testdata,pred$net.result,testdata^2)
colnames(result)<-c("Attribute","Prediction","Actual")
round(result,4)
      Attribute Prediction Actual
 [1,]   -1.5556     2.4213 2.4198
 [2,]   -0.2222     0.0364 0.0494
 [3,]   -1.1111     1.2254 1.2346
 [4,]    1.1111     1.2013 1.2346
 [5,]    0.6667     0.4395 0.4444
 [6,]    1.5556     2.4521 2.4198
 [7,]   -0.6667     0.4554 0.4444
 [8,]    0.2222     0.0785 0.0494
 [9,]    2.0000     3.9317 4.0000
[10,]   -2.0000     3.9675 4.0000
require(Metrics)
data("Boston",package="MASS")
data<-Boston
keeps<-c("crim","indus","nox","rm","age","dis","tax","ptratio","lstat","medv")
data<-data[keeps]
apply(data,2,function(x) sum(is.na(x)))
  crim   indus     nox      rm     age     dis     tax ptratio   lstat 
      0       0       0       0       0       0       0       0       0 
   medv 
      0 



This book consists of six chapters, which can be grouped into three subjects. The first subject is Machine Learning and takes place in Chapter 1. Deep Learning stems from Machine Learning. This implies that if you want to understand the essence of Deep Learning, you have to know the philosophy behind Machine Learning to some extent. Chapter 1 starts with the relationship between Machine Learning and Deep Learning, followed by problem solving strategies and fundamental limitations of Machine Learning. The detailed techniques are not introduced yet. Instead, fundamental concepts that applies to both the neural network and Deep Learning will be covered. The second subject is artificial neural network. Chapters 2-4 focuses on this subject. As Deep Learning is a type of Machine Learning that employs a neural network, the neural network is inseparable from Deep Learning. Chapter 2 starts with the fundamentals of the neural network: principles of its operation, architecture, and learning rules. It also provides the reason that the simple single-layer architecture evolved to the complex multi-layer architecture. Chapter 3 presents the backpropagation algorithm, which is an important and representative learning rule of the neural network and also employed in Deep Learning. This chapter explains how cost functions and learning rules are related and which cost functions are widely employed in Deep Learning. Chapter 4 introduces how to apply the neural network to classification problems. We have allocated a separate section for classification because it is currently the most prevailing application of Machine Learning. For example, image recognition, one of the primary applications of Deep Learning, is a classification problem. The third topic is Deep Learning. It is the main topic of this book as well. Deep Learning is covered in Chapters 5 and 6. Chapter 5 introduces the drivers that enables Deep Learning to yield excellent performance. For a better understanding, it starts with the history of barriers and solutions of Deep Learning. Chapter 6 covers the convolution neural network, which is representative of Deep Learning techniques. The convolution neural network is second-to-none in terms of image recognition. This chapter starts with an introduction of the basic concept and architecture of the convolution neural network as it compares with the previous image recognition algorithms. It is followed by an explanation of the roles and operations of the convolution layer and pooling layer, which act as essential components of the convolution neural network. The chapter concludes with an example of digit image recognition using the convolution neural network and investigates the evolution of the image throughout the layers.
<think>好的,用户需要寻找《Deep Learning for Computer Vision with Python》这本书的相关信息和资源。首先,我应该确认这本书的基本信息,比如作者、版本和内容结构。作者是Adrian Rosebrock,他是一位知名的计算机视觉和深度学习专家,经常在PyImageSearch博客上发布教程。 接下来,用户可能需要知道如何获取这本书。通常,这类技术书籍会有官方网站或者平台销售,比如亚马逊。我需要检查是否有电子版或纸质版,以及是否有配套的代码和数据集。同时,用户可能对书中的内容感兴趣,比如是否涵盖基础理论、实际应用案例或者工具框架的使用,如Keras、TensorFlow等。 另外,用户提到的引用中有提到Keras和神经网络,这本书应该会涉及这些内容,需要确认书中使用的框架版本是否与当前主流版本兼容。还要考虑是否有额外的资源,比如在线社区、GitHub仓库或者博客支持,这些对用户的学习会有帮助。 可能用户还需要了解这本书的难度级别,适合哪些读者,比如是否有机器学习基础的人。此外,是否有配套的课程或者视频教程也是有用的信息。需要确保提供的资源链接是有效的,并且是最新的,避免推荐过时的资料。 最后,生成相关问题时要考虑用户可能的后续需求,比如如何实践书中的项目,如何处理常见问题,或者与其他资源的比较。确保问题能够覆盖用户潜在的兴趣点,帮助他们进一步深入学习或解决问题。</think>关于《Deep Learning for Computer Vision with Python》的书籍资源及信息整理如下: ### 书籍基础信息 1. **作者**:Adrian Rosebrock,计算机视觉领域知名技术博主,PyImageSearch创始人[^3] 2. **版本结构**: - *Starter Bundle*:基础理论+Keras框架实践 - *Practitioner Bundle*:高级模型架构与调优技巧 - *ImageNet Bundle*:包含ImageNet数据集实战案例 3. **核心内容**: - 卷积神经网络(CNN)数学推导与可视化解释,例如特征图计算:$$\text{输出尺寸} = \lfloor \frac{W - F + 2P}{S} \rfloor + 1$$ 其中$W$为输入尺寸,$F$为滤波器大小,$P$为填充,$S$为步长[^1] - 迁移学习实战(VGG/ResNet/Inception) - 目标检测(YOLO/Faster R-CNN) - 图像生成(GAN/VAE) ### 资源获取 1. **官网资源**: - [PyImageSearch书籍专栏](https://www.pyimagesearch.com/deep-learning-computer-vision-python-book/)提供: - 完整代码库(含Jupyter Notebook) - 预训练模型下载 - 定制化数据集(17个分类任务数据集) 2. **配套工具链**: ```python # 书中示例代码结构 from keras.models import Sequential from keras.layers import Conv2D model = Sequential() model.add(Conv2D(32, (3,3), activation='relu', input_shape=(224,224,3))) ``` 3. **延伸学习材料**: - 官方配套视频教程(总时长45+小时) - COCO/Open Images等基准数据集应用指南[^2]
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值