转载:使用redis+flask维护动态代理池

本文介绍如何使用Redis的Set数据结构替代List,解决动态代理池中代理IP重复问题。Set结构虽能避免重复,但随机弹出代理可能导致获取到的代理并非最新有效。文章对比了Set与List结构的优缺点。

转载:使用redis+flask维护动态代理池

githu源码地址:
https://github.com/Germey/ProxyPool
更好的代理池维护:
https://github.com/Python3WebSpider/ProxyPool

下面文章的源地址:https://blog.youkuaiyun.com/polyhedronx/article/details/81485458

针对代理池中的代理IP可能会重复的问题,提出了一种解决方法,实测可行。 代理IP之所以会重复,和Redis数据库使用的数据结构有很大关系,原程序使用的是列表(list)结构,数据以列表形式存入数据库后是有序但允许重复的,当有新的数据存入时,并不会对数据的重复性进行检查和处理。但Redis不仅有列表结构,常见的Redis数据结构有String、Hash、List、Set(集合)和Sorted Set(有序集合),使用Set和Sorted Set结构就不会出现重复元素。 Set是无序集合,元素无序排列,当有重复元素存入时,数据库是不会发生变化的;Sorted Set是有序集合,有序集合是可排序的,但是它和列表使用索引下标进行排序依据不同的是,它给每个元素设置一个分数(score)作为排序的依据,当存入一个元素时,同时需要存入该元素的分数。 Sorted Set使用起来较复杂,主要是分数分配问题比较难搞,所以这里使用Set代替原程序中的List作为数据库的数据结构,将以下内容代替原来的“db.py”文件中的内容即可:
# db.py import redis from proxypool.error import PoolEmptyError from proxypool.setting import HOST, PORT, PASSWORD class RedisClient(object): def __init__(self, host=HOST, port=PORT): if PASSWORD: self._db = redis.Redis(host=host, port=port, password=PASSWORD) else: self._db = redis.Redis(host=host, port=port) def get(self, count=1): """ get proxies from redis """ proxies = [] for i in range(count): proxies.append(self._db.spop("proxies")) return proxies def put(self, proxy): """ add proxy to right top """ self._db.sadd("proxies", proxy) def pop(self): """ get proxy from right. """ try: return self._db.spop("proxies").decode('utf-8') except: raise PoolEmptyError @property def queue_len(self): """ get length from queue. """ return self._db.scard("proxies") def flush(self): """ flush db """ self._db.flushall() if __name__ == '__main__': conn = RedisClient() print(conn.pop()) 将数据结构改为Set以后,便不会出现代理池中代理IP重复的问题,但这样做也是有弊端的,因为Set是无序的,所以更新代理池的过程中每次弹出的代理IP也是随机的,这样代理池中的某些代理可能永远也不会被更新,而我们获取代理时采用pop方法得到的也是代理池中随机弹出的代理,该代理有可能是很久没有被更新的已经失效的代理。 总结一下就是使用Set结构可以保证代理池中的代理不会重复,但不能保证调用代理池获取代理时得到的代理是最新的和可用的,而List结构可以保证当前获取的代理是最新的,但代理池中的代理可能会有很大的重复。总之,两种方法都是有利有弊的,当然也可以尝试用有序集合(Sorted Set)构建一种完美的方法了。

 

posted @ 2018-09-20 16:17 Knight-Tao 阅读( ...) 评论( ...) 编辑 收藏
【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)内容概要:本文介绍了名为《【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)》的技术资源,聚焦于电力系统中低碳经济调度问题,结合N-1安全准则与分布鲁棒机会约束(DRCC)方法,提升调度模型在不确定性环境下的鲁棒性和可行性。该资源提供了完整的Matlab代码实现,涵盖建模、优化求解及仿真分析全过程,适用于复杂电力系统调度场景的科研复现与算法验证。文中还列举了大量相关领域的研究主题与代码资源,涉及智能优化算法、机器学习、电力系统管理、路径规划等多个方向,展示了广泛的科研应用支持能力。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源调度、智能电网相关工作的工程师。; 使用场景及目标:①复现高水平期刊(如EI/SCI)关于低碳经济调度的研究成果;②深入理解N-1安全约束与分布鲁棒优化在电力调度中的建模方法;③开展含新能源接入的电力系统不确定性优化研究;④为科研项目、论文撰写或工程应用提供可运行的算法原型和技术支撑。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码与案例数据,按照目录顺序逐步学习,并重点理解DRCC建模思想与Matlab/YALMIP/CPLEX等工具的集成使用方式,同时可参考文中列出的同类研究方向拓展研究思路。
内容概要:本文详细介绍了一个基于MATLAB实现的电力负荷预测项目,采用K近邻回归(KNN)算法进行建模。项目从背景意义出发,阐述了电力负荷预测在提升系统效率、优化能源配置、支撑智能电网和智慧城市建设等方面的重要作用。针对负荷预测中影响因素多样、时序性强、数据质量差等挑战,提出了包括特征工程、滑动窗口构造、数据清洗与标准化、K值与距离度量优化在内的系统性解决方案。模型架构涵盖数据采集、预处理、KNN回归原理、参数调优、性能评估及工程部署全流程,并支持多算法集成与可视化反馈。文中还提供了MATLAB环境下完整的代码实现流程,包括数据加载、归一化、样本划分、K值选择、模型训练预测、误差分析与结果可视化等关键步骤,增强了模型的可解释性与实用性。; 适合人群:具备一定MATLAB编程基础和机器学习基础知识,从事电力系统分析、能源管理、智能电网或相关领域研究的研发人员、工程师及高校师生;适合工作1-3年希望提升实际项目开发能力的技术人员; 使用场景及目标:①应用于短期电力负荷预测,辅助电网调度与发电计划制定;②作为教学案例帮助理解KNN回归在实际工程中的应用;③为新能源接入、需求响应、智慧能源系统提供数据支持;④搭建可解释性强、易于部署的轻量级预测模型原型; 阅读建议:建议结合MATLAB代码实践操作,重点关注特征构造、参数调优与结果可视化部分,深入理解KNN在时序数据中的适应性改进方法,并可进一步拓展至集成学习或多模型融合方向进行研究与优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值