一.首先看下Handler的常用使用场景
public class MainActivity extends AppCompatActivity {
private static final String TAG = MainActivity.class.getSimpleName();
Handler mHandler;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
new Thread(new Runnable() {
@Override
public void run() {
Looper.prepare();
mHandler = new Handler(Looper.myLooper()) {
@Override
public void handleMessage(@NonNull Message msg) {
super.handleMessage(msg);
Log.d(TAG, "msg.what = " + msg.what);
}
};
Looper.loop();
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
Message message = Message.obtain();
message.what = 200;
mHandler.sendMessageDelayed(message,1000);
}
}).start();
}
}
在一个子线程中建立Looper和Handler,并且重写handlerMesage()方法,在handlerMessage中接收消息,而这个消息的传递是在另一个子线程中传递过来,之所以能够实现跨线程通信,就在于其它线程拥有了Handler,Handler就像线程出使其它线程的国家大使,有了这个大使,每个线程都能向创立Handler的线程传递信息。
二.源码解析
1.使用Hander前,必须先建立Looper.prepare()方法,先看下prepare的方法
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
我们看下sThreadLocal的初始化
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
sThreadLoca是一个静态变量,说明它在Loop类中是唯一的存在,在每个线程中,调用Looper.prepare()方法,最终会在线程没有时Looper,
调用 sThreadLocal.set(new Looper(quitAllowed))方法建立Looper,因为使用类ThreadLocal,这样每个线程只要通过 sThreadLocal.get()方法,就可以获取到该线程的Looper。
既然在线程中建立了Looper,那么我们看下new Looper(quitAllowed)这里初始化了什么,进入源码中
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
看到Looper的构造方法中,建立了mQueue队列,这个队列又是什么时候起作用呢。现在先不关心它什么时候起作用,第一步我们明白,Looper.prepare()方法主要就是初始化了Looper和Queue队列。
2.接下里就是Handler的建立了,我们看new Handler(Looper.myLooper())方法
public Handler(@NonNull Looper looper) {
this(looper, null, false);
}
@UnsupportedAppUsage
public Handler(@NonNull Looper looper, @Nullable Callback callback, boolean async) {
mLooper = looper;
mQueue = looper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
我们看到在Handler构造函数中传入了第一步在线程中建立的Looper和Queue,以及新加入的CallBack和标志async,这两个类有什么用呢,我们先不关心,那么第二步这里就知道了建立Handler的时候传入了Looper和队列Queue。
3.接下来看下Loop.loop()方法,我们看下源码
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
// Allow overriding a threshold with a system prop. e.g.
// adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
final int thresholdOverride =
SystemProperties.getInt("log.looper."
+ Process.myUid() + "."
+ Thread.currentThread().getName()
+ ".slow", 0);
boolean slowDeliveryDetected = false;
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
// Make sure the observer won't change while processing a transaction.
final Observer observer = sObserver;
final long traceTag = me.mTraceTag;
long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
if (thresholdOverride > 0) {
slowDispatchThresholdMs = thresholdOverride;
slowDeliveryThresholdMs = thresholdOverride;
}
final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
final boolean needStartTime = logSlowDelivery || logSlowDispatch;
final boolean needEndTime = logSlowDispatch;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
final long dispatchEnd;
Object token = null;
if (observer != null) {
token = observer.messageDispatchStarting();
}
long origWorkSource = ThreadLocalWorkSource.setUid(msg.workSourceUid);
try {
msg.target.dispatchMessage(msg);
if (observer != null) {
observer.messageDispatched(token, msg);
}
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} catch (Exception exception) {
if (observer != null) {
observer.dispatchingThrewException(token, msg, exception);
}
throw exception;
} finally {
ThreadLocalWorkSource.restore(origWorkSource);
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (logSlowDelivery) {
if (slowDeliveryDetected) {
if ((dispatchStart - msg.when) <= 10) {
Slog.w(TAG, "Drained");
slowDeliveryDetected = false;
}
} else {
if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
msg)) {
// Once we write a slow delivery log, suppress until the queue drains.
slowDeliveryDetected = true;
}
}
}
if (logSlowDispatch) {
showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
这里虽然很多代码,但主要就是
for (; ; ) {
Message msg = queue.next();
...
msg.target.dispatchMessage(msg);
}
我们看到,在这里Looper永久循环,只要队列Queue有数据,则回调msg.targer.dispatchMessage(msg)方法,而msg.targer就是Hander,那么我们看下Hander的dispatchMessage源码,
public void dispatchMessage(@NonNull Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
可以看到如果我们在在Message中有callback,则调用handlerCallback(msg)方法,如果在我们第二步中Handler初始化设置了Callback,则Callback回调handleMessage(msg)方法,否则默认就走
handlerMessage(msg)方法。这样我们可以总结下,其实Loop.loop()方法就是让在对应线程建立的Loop,不断的循环等待队列的数据,只要有数据,就给Handler回调回Message数据,所以我们接下来要看的就是队列的数据是怎么来的。
4.我们看下在另一个线程中通过Handler传递消息
new Thread(new Runnable() {
@Override
public void run() {
Message message = Message.obtain();
message.what = 200;
mHandler.sendMessageDelayed(message, 1000);
}
}).start();
我们看下sendMessageDelayed的源码
public final boolean sendMessageDelayed(@NonNull Message msg, long delayMillis) {
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
ublic boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
long uptimeMillis) {
msg.target = this;
msg.workSourceUid = ThreadLocalWorkSource.getUid();
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
我们可以看到Handler在传递Message的过程中,最终就是通过方法queue.enqueueMessage(msg, uptimeMillis)加入到了队列中去,加入后,触发第三步中Looper调用queue.next()读取数据。这样Handler从发送Message,到Message进入Queue,再到Looper循环读取Queue中的Message,最后Handler中的dispatchMessage就收到了从各个线程传来的Message。