Time Limit: 3000MS | Memory Limit: 131072K | |
Total Submissions: 22749 | Accepted: 9503 |
Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4 0 1 1 1
Sample Output
1 2 2 3
给定 n*n 的矩阵 A 和正整数 k 和 m。求矩阵 A的幂的和。
递推法结合矩阵快速幂求解。
#include<cstdio>
#include<iostream>
#include<vector>
using namespace std;
typedef vector<int> vec;
typedef vector<vec> mat;
int n, k, m;
mat Mul(mat A, mat B)
{
mat C(A.size(), vec(B[0].size()));
for(int i= 0; i< A.size(); i++)
for(int k= 0; k< B.size(); k++)
for(int j= 0; j< B[0].size(); j++)
C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % m;
return C;
}
mat Pow(mat A, int n)
{
mat C(A.size(), vec(A.size()));
for(int i= 0; i< A.size(); i++)
C[i][i] = 1;
while(n)
{
if(n & 1) C = Mul(C, A);
A = Mul(A, A);
n = n >> 1;
}
return C;
}
int main()
{
scanf("%d %d %d", &n, &k, &m);
//构造输入矩阵
mat A(n, vec(n));
for(int i= 0; i< n; i++)
for(int j= 0; j< n; j++)
scanf("%d", &A[i][j]);
//构造初始矩阵
mat B(n*2, vec(n));
for(int i= 0; i< n; i++)
for(int j= 0; j< n; j++)
B[i+n][j] = A[i][j];
//构造幂乘矩阵
mat C(n*2, vec(n*2));
for(int i= 0; i< n; i++)
C[i][i] = C[i][i+n] = 1;
for(int i= 0; i< n; i++)
for(int j= 0; j< n; j++)
C[i+n][j+n] = A[i][j];
//最终矩阵
B = Mul(Pow(C, k), B);
for(int i= 0; i< n; i++)
{
printf("%d", B[i][0]);
for(int j= 1; j< n; j++)
printf(" %d", B[i][j]);
printf("\n");
}
return 0;
}