Performance Measures and Evaluation on IR System

本文深入探讨了信息检索中的核心概念,包括精确率、召回率、错误率、F-measure、平均精确率、R-精确率和折扣累积收益等评价指标的定义与应用。

All common measures generally assume a ground truth notion of relevance: every document is known to be either relevant or non-relevance to a particular query.

1. Precision and Recall

Precision is the fraction of the documents retrieved that are relevant to the user’s information need.

Recall is the fraction of the documents that are relevant to the query that are successful retrieved.

https://img-blog.youkuaiyun.com/20141101210900756?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVkZjIwMTA=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center

:   Retrieved documents    Relevant documents 

So, we will have



2.  Fall-out

Fall-out is the proportion of non-relevant documents that are retrieved, out of all non-relevant documents available:


It can be looked at as the probability that a non-relevant document is retrieved by a query.


3.      F-measure

F-measure or F-score is the weighted harmonic mean of precision and recall.

The traditional F-measure or balanced F-score is:


The general formula for non-negative real  is



4. Average Precision

By computing a precision and recall at every position in the ranked sequence of documents, one can plot a precision-recall curve, plotting precision as a function of recall .

Average Precision computes the average value of  over the interval from to .


This integral is in practice replaced with a finite sum over every position in the ranked sequence of documents.

Where k is the rank in the sequence of retrieved documents, n is the number of retrieved documents,P(k) is the precision at cut-off k in the list, and  is the change in recall from items k-1 to k.


5. R-Precision

Precision at position in the ranking of results for a query that has R relevant documents.

6. Mean average precision

Mean average precision for a set of queries is the mean of the average precision scores for each query.


Where Q is the number of queries.


7. Discounted cumulative gain

DCG uses a graded relevance scale of documents from the results set to evaluate the usefulness or gain, of a document based on its position in the result list.

The DCG accumulated at a particular rank position p is defined as:


Precision and Recall

1. Information Retrieval

  • Precision is defined as the number of relevant documents retrieved by a search divided by the total number of documents retrieved by that search.
  • Recall is defined as the number of relevant documents retrieved by a search divided by the total number of existing relevant documents.

2. Classification task

  • Precision is defined as the number of true positives divided by the total number of elements labeled as belonging to the positive class (i.e.the sum of true positives and false positives). Precision is also called positive predict value (PPV).
  • Recall is defined as the number of true positives divided by the total number of elements that actually belong to positive class (i.e.the sum of true positives and false negatives). Recall is also called sensitivity or true positive rate.

3. Relationship

Often, there is an inverse relationship between precision and recall.Usually, precision and recall scores are not discussed in isolation. Instead,either values for one measure are compared for a fixed level at the other measure or both are combined into a single measure (such as F-measure).

 

Confusion Matrix(contingency table)

Each column of the matrix represents the instance in a predicted class, while each row represents the instances in an actual class.

Confusion Matrix allows more detailed analysis than accuracy. Accuracy is not a reliable metric for the real performance of a classifier, because it will yield misleading results if the data set is unbalanced (that is, when the number of samples in different classes vary greatly).


Reference:

[1] http://en.wikipedia.org/wiki/Information_retrieval

[2] http://en.wikipedia.org/wiki/Precision_and_recall

[3] http://en.wikipedia.org/wiki/Confusion_matrix


内容概要:本文设计了一种基于PLC的全自动洗衣机控制系统内容概要:本文设计了一种,采用三菱FX基于PLC的全自动洗衣机控制系统,采用3U-32MT型PLC作为三菱FX3U核心控制器,替代传统继-32MT电器控制方式,提升了型PLC作为系统的稳定性与自动化核心控制器,替代水平。系统具备传统继电器控制方式高/低水,实现洗衣机工作位选择、柔过程的自动化控制/标准洗衣模式切换。系统具备高、暂停加衣、低水位选择、手动脱水及、标准两种蜂鸣提示等功能洗衣模式,支持,通过GX Works2软件编写梯形图程序,实现进洗衣过程中暂停添加水、洗涤、排水衣物,并增加了手动脱水功能、脱水等工序蜂鸣器提示的自动循环控制功能,提升了使用的,并引入MCGS组便捷性与灵活性态软件实现人机交互界面监控。控制系统通过GX。硬件设计包括 Works2软件进行主电路、PLC接梯形图编程线与关键元,完成了启动、进水器件选型,软件、正反转洗涤部分完成I/O分配、排水、脱、逻辑流程规划水等工序的逻辑及各功能模块梯设计,并实现了大形图编程。循环与小循环的嵌; 适合人群:自动化套控制流程。此外、电气工程及相关,还利用MCGS组态软件构建专业本科学生,具备PL了人机交互C基础知识梯界面,实现对洗衣机形图编程能力的运行状态的监控与操作。整体设计涵盖了初级工程技术人员。硬件选型、; 使用场景及目标:I/O分配、电路接线、程序逻辑设计及组①掌握PLC在态监控等多个方面家电自动化控制中的应用方法;②学习,体现了PLC在工业自动化控制中的高效全自动洗衣机控制系统的性与可靠性。;软硬件设计流程 适合人群:电气;③实践工程、自动化及相关MCGS组态软件与PLC的专业的本科生、初级通信与联调工程技术人员以及从事;④完成PLC控制系统开发毕业设计或工业的学习者;具备控制类项目开发参考一定PLC基础知识。; 阅读梯形图建议:建议结合三菱编程能力的人员GX Works2仿真更为适宜。; 使用场景及目标:①应用于环境与MCGS组态平台进行程序高校毕业设计或调试与运行验证课程项目,帮助学生掌握PLC控制系统的设计,重点关注I/O分配逻辑、梯形图与实现方法;②为工业自动化领域互锁机制及循环控制结构的设计中类似家电控制系统的开发提供参考方案;③思路,深入理解PL通过实际案例理解C在实际工程项目PLC在电机中的应用全过程。控制、时间循环、互锁保护、手动干预等方面的应用逻辑。; 阅读建议:建议结合三菱GX Works2编程软件MCGS组态软件同步实践,重点理解梯形图程序中各环节的时序逻辑与互锁机制,关注I/O分配与硬件接线的对应关系,并尝试在仿真环境中调试程序以加深对全自动洗衣机控制流程的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值