可爱的 Python:用 Psyco 让 Python 运行得像 C 一样快 | ![]() | 英文原文 | ![]() | |
![]() | ||||
![]() |
![]() |
David Mertz,博士 (mertz@gnosis.cx)
Python 对于您想让它做的事来说通常够快了。编程新手对于类似 Python 这样的解释型/字节编译型语言,将 90% 的关注点集中在执行速度方面,是相当幼稚的。在最新的硬件上,大多数非优化的 Python 程序运行的速度和所需要达到的速度一样快,而且,花费额外的编程工作以使应用程序运行得更快实在没什么意义。 因此,在本文,我只对其它的百分之十感兴趣。有时,Python 程序(或用其它语言编写的程序)也会运行得极其缓慢。不同的目的所需要的改进差异很大;提高只运行几毫秒的任务的性能极少能引人注目,但是加快那些需运行几分钟、几小时、几天甚至几星期的任务的速度通常是很值得的。而且,应该注意到并不是所有任务运行缓慢的原因都是由 CPU 引起的。例如,如果完成一个数据库查询要花费几个小时,那么处理结果数据集要花费一分钟还是两分钟就没什么差别了。本文同样不讨论与 I/O 有关的问题。 有很多方法可以加速 Python 程序。每个程序员都应当想到的第一种技术就是改进所使用的算法和数据结构。对低效算法步骤进行细微的优化是徒劳无益的事情。例如,如果当前技术的复杂性等级是 O(n**2),那么将这些步骤加速 10 倍远不及寻找 O(n) 替代品来得有用。即使在考虑用汇编语言重写算法这种极端情况时,这种思想也都适用:Python 中正确的算法通常会比手工调优的汇编语言中的错误算法快得多。 第二种您应当首先考虑的技术是概要分析您的 Python 应用程序,要着眼于将关键部分重写成 C 扩展模块。使用像 SWIG 这样的扩展封装器(请参阅参考资料),可以创建 C 扩展,它将程序中最耗时元素作为 C 代码执行。以这种方式扩展 Python 相对简单,但要花些时间学习(并且需要了解 C 的知识)。您经常会发现执行 Python 应用程序所花费的时间绝大部分只是花在了几个函数上,因此,采用这种扩展可能会有很可观的“成果”。 第三种技术建立在第二种技术的基础之上。Greg Ewing 已经创建了名叫 Pyrex 的语言,该语言融合了 Python 和 C。特别地,要使用 Pyrex,需要用类似 Python 的语言编写函数,这种语言将类型声明添加到所选变量中。Pyrex(工具)将“.pyx”文件处理成“.c”扩展名的文件。一旦用 C 编译器进行了编译,就可以将这些 Pyrex(语言)模块导入常规的 Python 应用程序并使用。由于 Pyrex 使用的语法和 Python 本身的语法(包括循环、分支和异常语句、赋值方式、块缩进等等)几乎一样,因此 Pyrex 程序员不需要学会用 C 去编写扩展。而且,与直接用 C 编写扩展相比,Pyrex 允许在同一代码中更无缝地混合 C 级别的变量和 Python 级别的变量(对象)。 最后一种技术就是本文的主题。扩展模块 Psyco 可以插入 Python 解释器的内部,而且可以有选择性地用优化的机器代码去替换部分 Python 的解释型字节码。和所描述的其它技术不同,Psyco 是严格地在 Python 运行时进行操作的。也就是说,Python 源代码是通过 Psyco 是如何工作的 在常规的 Python 中, Psyco 用复合求值单元替代
该段代码的优化版本不需要用“x 变量/对象的内容”乘每个 除为小型操作创建特定于 i386 的代码之外,Psyco 还高速缓存这个已编译的机器码以备今后重用。如果 Psyco 能够识别出特定的操作和早先所执行的(“专门化的”)操作一样,那么,它就能依靠这个高速缓存的代码而不需要再次编译代码段。这样就节省了一些时间。 但是,Psyco 中真正省时的原因在于 Psyco 将操作分成三个不同的级别。对于 Psyco,有“运行时”、“编译时”和“虚拟时”变量。Psyco 根据需要提高和降低变量的级别。运行时变量只是常规 Python 解释器处理的原始字节码和对象结构。一旦 Psyco 将操作编译成机器码,那么编译时变量就会在机器寄存器和可直接访问的内存位置中表示。 最有意思的级别是虚拟时变量。在内部,一个 Python 变量就是一个有许多成员组成的完整结构 - 即使当对象只代表一个整数时也是如此。Psyco 虚拟时变量代表了需要时可能会被构建的 Python 对象,但是这些对象的详细信息在它们成为 Python 对象之前是被忽略的。例如,考虑如下赋值:
标准的 Python 会构建和破坏许多对象以计算这个值。构建一个完整的整数对象以保存 使用 Psyco 有几种方法可以指定 Psyco 应该做什么。“猎枪(shotgun)”方法使得随处都可使用 Psyco 即时操作。要做到这点,把下列行置于模块顶端:
第一行告诉 Psyco 对所有全局函数“发挥其魔力”。第二行(在 Python 2.2 及以上版本中)告诉 Psyco 对类方法执行相同的操作。为了更精确地确定 Psyco 的行为,可以使用下列命令:
第二种形式把 Psyco 的性能 我以十分幼稚的方式开始了我的测试过程。我仅仅考虑了我近来运行的、但还未考虑加速的应用程序。想到的第一个示例是用来将我即将出版的书稿(Text Processing in Python)转换成 LaTeX 格式的文本操作程序。该应用程序使用了一些字符串方法、一些正则表达式和一些主要由正则表达式和字符串匹配所驱动的程序逻辑。实际上将它用作 Psyco 的测试候选是很糟的选择,但是我还是使用了,就这么开始了。 第一遍测试中,我所做的就是将 文本处理候选项的第二遍测试中。我只添加了 为进行更恰当的 Psyco 测试,我搜寻出我在以前的文章里编写的一些神经网络代码(请参阅“参考资料”)。这个“代码识别器(code_recognizer)”应用程序可以经“训练”用于识别不同编程语言编写的不同 ASCII 值的可能分布情况。类似于这样的东西可能在猜测文件类型方面(比方说丢失的网络信息包)将很有用;但是,关于“训练”些什么,代码实际上完全是通用的 - 它能很容易地学会识别面孔、声音或潮汐模式。任何情况下,“代码识别器”都基于 Python 库 使用了一段时间后,我建立了有关 Psyco 用法的一些详细信息。对于这种只有少量类和函数的应用程序,使用即时绑定还是目标绑定没有太大区别。但最佳的结果是,通过有选择性地绑定最优化类,仍可得到几个百分点的改进。然而,更值得注意的是要理解 Psyco 绑定的作用域,这一点很重要。
也就是说,从 Psyco 的观点来看,有趣的事情在类 一旦找到适当的 Psyco 绑定的细微的详细信息,那么加速效果是相当明显的。使用参考文章中提供的相同测试用例和训练方法(500 个训练模式,1000 个训练迭代),神经网络训练时间从 2000 秒左右减到了 600 秒左右 - 提速了 3 倍多。将迭代次数降到 10,加速的倍数也成比例降低(但对神经网络的识别能力无效),迭代的中间数值也会如此变化。 我发现使用两行新代码就能将运行时间从超过半小时减到 10 分钟左右,效果非常显著。这种加速仍可能比 C 编写的类似应用程序的速度慢,而且它肯定比几个独立的 Psyco 测试用例所反映出的 100 倍加速要慢。但是这种应用程序是相当“真实的”,而且在许多环境中这些改进已经是够显著的了。 Psyco 将何去何从? 若将 Psyco 类型的技术集成到 Python 本身的某个未来版本中去,会多么令人激动,尽管我怀疑这永远不会真正发生。添加几行导入和绑定代码不需要做很多工作,但却可以轻易地让 Python 比以前运行得快得多。我们将看到这一点。
|