HOG特征
局部归一化的梯度方向直方图,是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征。
参数1(检测窗口)的宽- 参数2(块大小)的宽 结果与参数3(块滑动增量)的余数要为0 高也一样
参数4是胞元大小,参数5是梯度方向
HOGDescriptor hog(Size(128, 64), Size(16, 16), Size(8, 8), Size(8, 8), 3);
检测窗口被分为:((128-16)/8+1)*((64-16)/8+1)=105个块(Block);
一个Block有4个胞元(Cell);
一个Cell的Hog描述子向量的长度是9;
统计梯度直方图特征,就是将梯度方向(0-360)划分为x个区间,将图像化为16x16的若干个窗口,每个窗口又划分为x个block,每个block再化为4个cell(8x8)。对每一个cell,算出每一像素点的梯度方向,按梯度方向增加对应bin的值,最终综合N个cell的梯度直方图组成特征。
简单来说,车牌的边缘与内部文字组成的一组信息(在边缘和角点的梯度值是很大的,边缘和角点包含了很多物体的形状信息),HOG就是抽取这些信息组成一个直方图。