车牌识别三种识别方式

本文详细介绍了车牌识别中的三种关键技术:HOG特征用于捕捉图像边缘和轮廓信息,SVM作为监督学习模型区分车牌与非车牌,HSV颜色模型通过色调、饱和度和明度对颜色进行描述。HOG通过梯度直方图提取图像特征,SVM使用核函数进行维度提升以分类,HSV模型则有助于识别不同颜色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

HOG特征

局部归一化的梯度方向直方图,是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征。

参数1(检测窗口)的宽- 参数2(块大小)的宽 结果与参数3(块滑动增量)的余数要为0 高也一样

参数4是胞元大小,参数5是梯度方向

HOGDescriptor hog(Size(128, 64), Size(16, 16), Size(8, 8), Size(8, 8), 3);

在这里插入图片描述

在这里插入图片描述

检测窗口被分为:((128-16)/8+1)*((64-16)/8+1)=105个块(Block);

一个Block有4个胞元(Cell);

一个Cell的Hog描述子向量的长度是9;

统计梯度直方图特征,就是将梯度方向(0-360)划分为x个区间,将图像化为16x16的若干个窗口,每个窗口又划分为x个block,每个block再化为4个cell(8x8)。对每一个cell,算出每一像素点的梯度方向,按梯度方向增加对应bin的值,最终综合N个cell的梯度直方图组成特征。

简单来说,车牌的边缘与内部文字组成的一组信息(在边缘和角点的梯度值是很大的,边缘和角点包含了很多物体的形状信息),HOG就是抽取这些信息组成一个直方图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值