模拟算法的优缺点:
1.可以突破爬山算法的局限性,获得全局最优解(以一 定的概率接受较差解,从而跳出局部最;优解)。
2.初始解与最终解都是随机选取的,它们毫无关联,因此具有很好的鲁棒性,即抵御外界不稳定因素的能力。
3.其最优解常常受迭代次数k的影响,若k值越大,则搜索时间越长,获得的最优解更可靠; k值越小,则搜索时间越短,有可能就跳过了最优解。
4.模拟退火算法受温度冷却速率的影响,若冷却速率较慢,则搜索时间较长,可以获得更优的解,但是会花费大量时间;如冷却速度过快,可能较快的搜索到更优的解,但也有可能直接跳过最优解。
蚁群优化算法特点
(1)采用正反馈机制,使得搜索过程不断收敛,最终逼近最优解。
(2)每个个体可以通过释放信息素来改变周围的环境,且每个个体能够感知周围环境的实时变化,个体间通过环境进行间接地通讯。(3)搜索过程采用分布式计算方式,多个个体同时进行并行计算,大大提高了算法的计算能力和运行效率。
(4)启发式的概率搜索方式不容易陷入局部最优,易于寻找到全局最优解。
蚁群算法缺陷分析
(1)收敛速度慢。蚁群算法中信息素初值相同,选择下一个节点时倾向于随机选择。虽然随机选择能探索更大的任务空间,有助于找到潜在的全局最优解,但是需要较长时间才能发挥正反馈的作用,导致算法初期收敛速度较慢。
(2)局部最优问题。蚁群算法具有正反馈的特点,初始时刻环境中的信息素完全相同,蚂蚁几乎按随机方式完成解的构建,这些解必然会存在优劣之分。在信息素更新时,蚁群算法在较优解经过