题目:
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
解答:class Solution {
public:
int minPathSum(vector<vector<int> > &grid) {
int m = grid.size();
int n = (m == 0 ? 0 : grid[0].size());
if(m == 0 || n == 0) {
return 0;
}
for(int i = 1; i < m; i++) {
grid[i][0] += grid[i-1][0];
}
for(int j = 1; j < n; j++) {
grid[0][j] += grid[0][j-1];
}
for(int k = 1; k < m; k++) {
for(int w = 1; w < n; w++) {
int tmp=((grid[k][w]+grid[k-1][w])<(grid[k][w]+grid[k][w-1])?(grid[k][w]+grid[k-1][w]):(grid[k][w]+grid[k][w-1]));
grid[k][w] = tmp;
}
}
return grid[m-1][n-1];
}
};
思路:
动态规划思想,走到(m,n)的最小值为v(m,n)加上v(m-1,n)与v(m,n-1)两者间较小的那一个