Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 13110 Accepted Submission(s): 8015
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10 1 3 6 9 0 8 5 7 4 2
Sample Output
16
Author
CHEN, Gaoli
Source
Recommend
刚学线段树,这道题也是上网看别人的代码,什么时候自己也能写出来啊。。。。。
题目大概意思是求最小逆序数。
注意:1、对于某一序列,其中的某一个数a[i]能构成多少个逆序,只须判断在a[i]+1~n的范围内找之前的数是否出现过的次数;
2、然后求出第一个序列的逆序数。
3、由第一个序列的逆序数可以推出它下一个序列的逆序数。 有规律 下一个序列的逆序数 sum = 上一个的sum - a[i] - 1 - a[i];如果得出呢 比如说:
序列 3 6 9 0 8 5 7 4 2 1 把3移到后面,则它的逆序数会减少3个(0 2 1) 但同时会增加 n - a[i] - 1个。 对于1中如何求其出现的次数呢?具体见Update函数 原理是,由开始往后更新,每输一个数就在其对应的位置标志其出现过。如输了 3 6 9 则 node[u].l = node[u].r = 3 6 9 的sum都为1 当输入0时,查找区间1~10内之前输入的有哪些数出现就是它的逆序数 此时 3 6 9 都出现过了。
2、然后求出第一个序列的逆序数。
3、由第一个序列的逆序数可以推出它下一个序列的逆序数。 有规律 下一个序列的逆序数 sum = 上一个的sum - a[i] - 1 - a[i];如果得出呢 比如说:
序列 3 6 9 0 8 5 7 4 2 1 把3移到后面,则它的逆序数会减少3个(0 2 1) 但同时会增加 n - a[i] - 1个。 对于1中如何求其出现的次数呢?具体见Update函数 原理是,由开始往后更新,每输一个数就在其对应的位置标志其出现过。如输了 3 6 9 则 node[u].l = node[u].r = 3 6 9 的sum都为1 当输入0时,查找区间1~10内之前输入的有哪些数出现就是它的逆序数 此时 3 6 9 都出现过了。
#include <iostream>
#include <stdio.h>
#define M 5005
using namespace std;
struct Tree
{
int l,r,sum;
}tree[M*4];
int a[M];
void build(int pos,int l,int r)
{
tree[pos].l=l;
tree[pos].r=r;
tree[pos].sum=0;
if(tree[pos].l==tree[pos].r)
{
return;
}
int mid=(tree[pos].l+tree[pos].r)/2;
build(pos*2,l,mid);
build(pos*2+1,mid+1,r);
}
void update(int pos,int val)
{
if(tree[pos].l==tree[pos].r)
{
tree[pos].sum++;
return;
}
if(val<=tree[pos*2].r)
update(pos*2,val);
else
update(pos*2+1,val);
tree[pos].sum=tree[pos*2].sum+tree[pos*2+1].sum;
}
int query(int pos,int val)
{
if(val<=tree[pos].l)
return tree[pos].sum;
if(val<=tree[pos*2].r)
return query(pos*2,val)+query(pos*2+1,val);
else return query(pos*2+1,val);
}
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
build(1,0,n);
int sum=0;
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
sum+=query(1,a[i]+1);
update(1,a[i]);
}
int ans=sum;
for(int i=0;i<n;i++)
{
sum+=n-a[i]-a[i]-1;
ans=min(ans,sum);
}
printf("%d\n",ans);
}
return 0;
}