Codeforce 467C. George and Job(DP)

本文介绍了一道经典的编程挑战题,题目要求从一个整数序列中选择k组连续子序列,每组长度为m,使得这k组子序列的元素之和最大。文章提供了完整的AC代码实现,采用动态规划算法解决此问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C. George and Job
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

The new ITone 6 has been released recently and George got really keen to buy it. Unfortunately, he didn't have enough money, so George was going to work as a programmer. Now he faced the following problem at the work.

Given a sequence of n integers p1, p2, ..., pn. You are to choose k pairs of integers:

[l1, r1], [l2, r2], ..., [lk, rk] (1 ≤ l1 ≤ r1 < l2 ≤ r2 < ... < lk ≤ rk ≤ nri - li + 1 = m), 

in such a way that the value of sum  is maximal possible. Help George to cope with the task.

Input

The first line contains three integers nm and k (1 ≤ (m × k) ≤ n ≤ 5000). The second line contains n integers p1, p2, ..., pn(0 ≤ pi ≤ 109).

Output

Print an integer in a single line — the maximum possible value of sum.

Sample test(s)
input
5 2 1
1 2 3 4 5
output
9
input
7 1 3
2 10 7 18 5 33 0
output

61

题目大意:一个长度为n的序列选k组,每组长度为m,问最优的选法

ac代码

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#define LL long long
using namespace std;
LL sum[5050];
LL dp[5050][5050];
int n,m,k;
LL DP()
{
    int i,j;
    memset(dp,0,sizeof(dp));
    for(i=m;i<=n;i++)
    {
        for(j=1;j<=i&&j<=k;j++)
        {
            dp[i][j]=max(dp[i-m][j-1]+(sum[i]-sum[i-m]),dp[i-1][j]);
        }
    }
    return dp[n][k];
}
int main()
{
    while(scanf("%d%d%d",&n,&m,&k)!=EOF)
    {
        int i;
        memset(sum,0,sizeof(sum));
        for(i=1;i<=n;i++)
        {
            LL x;
            scanf("%lld",&x);
            sum[i]=sum[i-1]+x;
        }
        printf("%lld\n",DP());
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值