HDOJ 题目4284 A Famous Stone Collector(组合数学)

本文介绍了一道关于组合数学的问题,即如何计算不同颜色石头的所有可能排列方式。问题要求使用编程方法解决,输入为每种颜色石头的数量,输出为所有可能的不同排列数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A Famous Stone Collector

Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1122    Accepted Submission(s): 421


Problem Description
Mr. B loves to play with colorful stones. There are n colors of stones in his collection. Two stones with the same color are indistinguishable. Mr. B would like to 
select some stones and arrange them in line to form a beautiful pattern. After several arrangements he finds it very hard for him to enumerate all the patterns. So he asks you to write a program to count the number of different possible patterns. Two patterns are considered different, if and only if they have different number of stones or have different colors on at least one position.
 

Input
Each test case starts with a line containing an integer n indicating the kinds of stones Mr. B have. Following this is a line containing n integers - the number of 
available stones of each color respectively. All the input numbers will be nonnegative and no more than 100.
 

Output
For each test case, display a single line containing the case number and the number of different patterns Mr. B can make with these stones, modulo 1,000,000,007, 
which is a prime number.
 

Sample Input
  
3 1 1 1 2 1 2
 

Sample Output
  
Case 1: 15 Case 2: 8
Hint
In the first case, suppose the colors of the stones Mr. B has are B, G and M, the different patterns Mr. B can form are: B; G; M; BG; BM; GM; GB; MB; MG; BGM; BMG; GBM; GMB; MBG; MGB.
 

Source
 

Recommend
We have carefully selected several similar problems for you:   4247  4255  4252  4246  4249 
 题目大意:n用颜色的球,给出每种球的个数, 问总共有多少种排法,石头可以不用上
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#define LL long long
#define mod 1000000007
using namespace std;
LL a[110];
LL c[11010][110];
int dp[110][11010];
void fun()
{
    int i,j;
    for(i=0;i<10010;i++)
        c[i][0]=1;
    for(i=1;i<10010;i++)
        for(j=1;j<=i&&j<110;j++)
        c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
}
int main()
{
    LL n;
    int cas=0;
    fun();
    while(scanf("%lld",&n)!=EOF)
    {
        LL i,j,k;
        LL sum=0;
        int m;
       // scanf("%d",&m);
       // printf("++++%lld\n",c[n][m]);
        for(i=1;i<=n;i++)
        {
            scanf("%lld",&a[i]);
            sum+=a[i];
        }
        dp[0][0]=1;
        for(i=1;i<=n;i++)
        {
            for(j=0;j<=sum;j++)
            {
                dp[i][j]=dp[i-1][j];
                for(k=1;k<=a[i];k++)
                {
                    if(j-k<0)
                        break;
                    dp[i][j]=(dp[i][j]+dp[i-1][j-k]*c[j][k]%mod)%mod;
                }
            }
        }
        LL ans=0;
        for(i=1;i<=sum;i++)
        {
            ans=(ans+dp[n][i])%mod;
        }
        printf("Case %d: %lld\n",++cas,ans);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值