POJ 题目3252 Round Numbers(组合数学)

本文介绍了一种用于计算指定区间内圆数数量的算法,详细解释了如何通过位操作和组合数学解决此问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Round Numbers
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 10254 Accepted: 3741

Description

The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, Paper, Stone' (also known as 'Rock, Paper, Scissors', 'Ro, Sham, Bo', and a host of other names) in order to make arbitrary decisions such as who gets to be milked first. They can't even flip a coin because it's so hard to toss using hooves.

They have thus resorted to "round number" matching. The first cow picks an integer less than two billion. The second cow does the same. If the numbers are both "round numbers", the first cow wins,
otherwise the second cow wins.

A positive integer N is said to be a "round number" if the binary representation of N has as many or more zeroes than it has ones. For example, the integer 9, when written in binary form, is 1001. 1001 has two zeroes and two ones; thus, 9 is a round number. The integer 26 is 11010 in binary; since it has two zeroes and three ones, it is not a round number.

Obviously, it takes cows a while to convert numbers to binary, so the winner takes a while to determine. Bessie wants to cheat and thinks she can do that if she knows how many "round numbers" are in a given range.

Help her by writing a program that tells how many round numbers appear in the inclusive range given by the input (1 ≤ Start < Finish ≤ 2,000,000,000).

Input

Line 1: Two space-separated integers, respectively Start and Finish.

Output

Line 1: A single integer that is the count of round numbers in the inclusive range Start.. Finish

Sample Input

2 12

Sample Output

6

Source

USACO 2006 November Silver

转自:http://blog.youkuaiyun.com/acm_cxlove/article/details/7855433

转载请注明出处,谢谢 http://blog.youkuaiyun.com/ACM_cxlove?viewmode=contents           by---cxlove

题目:一个数转化成二进制之后,0的个数大于等于1的为round数,问一个区间内有多少round数。

http://poj.org/problem?id=3252

有点像是数位DP的题目。

转化成二进制后只有01两种情况,我们可以直接统计。

我们统计比N小的round数有多少。

对于长度比N小的数,比较简单,如果长度为L,那么高位肯定是1,然后枚举0的个数,利用组合数就能解决。

然后是长度和N一样,但是比N小的。

我们从高位开始枚举,如果出现1,则把这位看作0,那么枚举之后的低位,肯定是比原数小的。

依次下去,注意统计好高位已经出现的0,1个数。

  1. #include<iostream>   
  2. #include<cstdio>   
  3. #include<ctime>   
  4. #include<cstring>   
  5. #include<cmath>   
  6. #include<algorithm>   
  7. #include<cstdlib>   
  8. #include<vector>   
  9. #define C    240   
  10. #define TIME 10   
  11. #define inf 1<<25   
  12. #define LL long long   
  13. using namespace std;  
  14. int c[35][35];  
  15. void Init(){  
  16.     for(int i=0;i<33;i++){  
  17.         c[i][0]=c[i][i]=1;  
  18.         for(int j=1;j<i;j++)  
  19.             c[i][j]=c[i-1][j]+c[i-1][j-1];  
  20.     }  
  21. }  
  22. int slove(int n){  
  23.     int len=0,bit[35];  
  24.     while(n){  
  25.         bit[++len]=n%2;  
  26.         n/=2;  
  27.     }  
  28.     int sum=0;  
  29.     for(int i=1;i<len;i++)  
  30.         for(int j=(i+1)/2;j<i;j++)  
  31.             sum+=c[i-1][j];  
  32.     int one=1,zero=0;  
  33.     for(int i=len-1;i;i--){  
  34.         if(bit[i]){  
  35.             //如果这位是1,则如果是0,枚举低位,肯定比原数小   
  36.             zero++;  
  37.             for(int j=max(0,(len+1)/2-zero);j<i;j++)  
  38.                 sum+=c[i-1][j];  
  39.             //统计结束后,要恢复   
  40.             zero--;  
  41.             one++;  
  42.         }  
  43.         else  
  44.             zero++;  
  45.     }  
  46.     return sum;  
  47. }  
  48. int main(){  
  49.     int l,r;  
  50.     Init();  
  51.     while(cin>>l>>r)  
  52.         cout<<slove(r+1)-slove(l)<<endl;  
  53.     return 0;  
  54. }  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值