HDOJ 题目1423 Greatest Common Increasing Subsequence(LICS)

本文介绍了一个经典的算法问题——最长公共递增子序列(LCIS),并提供了一段AC代码实现。该问题要求找出两个序列中最长的共同递增子序列的长度。输入包含两个整数序列,输出为该子序列的长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Greatest Common Increasing Subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4693    Accepted Submission(s): 1496


Problem Description
This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.
 

Input
Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.
 

Output
output print L - the length of the greatest common increasing subsequence of both sequences.
 

Sample Input
  
1 5 1 4 2 5 -12 4 -12 1 2 4
 

Sample Output
  
2
 

Source
 

Recommend
lcy   |   We have carefully selected several similar problems for you:   1422  1400  1424  1401  1404 
 
ac代码
#include<stdio.h>
#include<string.h>
#define max(a,b) (a>b?a:b)
int a[550],b[550],n,m,dp[550];
int lics()
{
    int ans=0,i,j;
    for(i=1;i<=n;i++)
    {
        int ma=0;
        for(j=1;j<=m;j++)
        {
            int temp=ma;
            if(b[j]<a[i]&&dp[j]>ma)
                ma=dp[j];
            if(b[j]==a[i])
                dp[j]=temp+1;
            ans=max(ans,dp[j]);
        }
    }
    return ans;
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        //int n,m;
        int i,j;
        scanf("%d",&n);
        memset(dp,0,sizeof(dp));
        for(i=1;i<=n;i++)
            scanf("%d",&a[i]);
        scanf("%d",&m);
        for(j=1;j<=m;j++)
            scanf("%d",&b[j]);
        printf("%d\n",lics());
        if(t)
            printf("\n");
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值