HDOJ 题目3076 ssworld VS DDD(概率dp)

本篇介绍了一个概率博弈问题,两个玩家通过掷骰子的方式进行对决,根据不同的血量和掷骰概率来计算一方获胜的概率。文章提供了一段AC代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ssworld VS DDD

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1607    Accepted Submission(s): 330


Problem Description
One day, sssworld and DDD play games together, but there are some special rules in this games.
They both have their own HP. Each round they dice respectively and get the points P1 and P2 (1 <= P1, P2 <= 6). Small number who, whose HP to reduce 1, the same points will remain unchanged. If one of them becomes 0 HP, he loses.
As a result of technical differences between the two, each person has different probability of throwing 1, 2, 3, 4, 5, 6. So we couldn’t predict who the final winner.

 

Input
There are multiple test cases.
For each case, the first line are two integer HP1, HP2 (1 <= HP1, HP2 <= 2000), said the first player sssworld’s HP and the second player DDD’s HP.
The next two lines each have six floating-point numbers per line. The jth number on the ith line means the the probability of the ith player gets point j. The input data ensures that the game always has an end.
 

Output
One float with six digits after point, indicate the probability sssworld won the game.
 

Sample Input
  
5 5 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 5 5 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000
 

Sample Output
  
0.000000 1.000000
 

Source
 

Recommend
lcy   |   We have carefully selected several similar problems for you:   3069  3070  3071  3072  3073 
 题目大意:两个人掷筛子,每个人都有血量h1,h2,也有掷6个数的概率,掷一次,点小的血量减一,最后谁的血量先变为0,就输了,求第一个人赢的概率,
ps:这个题的数据有坑,,,,开始一直wa,看了讨论组才知道,,数据反了,,正常应该是输入 h1,h2的,,换了一下顺序就过了。。坑啊
ac代码
#include<stdio.h>
#include<string.h>
double a[10],b[10],dp[2005][2005];
int main()
{
	int h1,h2;
	while(scanf("%d%d",&h2,&h1)!=EOF)
	{
		int i,j;
		double p1,p2,p,w1,w2;
		for(i=1;i<=6;i++)
			scanf("%lf",&a[i]);
		for(i=1;i<=6;i++)
			scanf("%lf",&b[i]);
		p1=p2=0;
		for(i=2;i<=6;i++)
		{
			for(j=1;j<i;j++)
			{
				p1+=a[i]*b[j];
				p2+=a[j]*b[i];
			}
		}
		p=1-p2-p1;
		if(p==1)
			w1=w2=0;
		else
		{
			w1=p1/(1-p);
			w2=p2/(1-p);
		}
		memset(dp,0,sizeof(dp));
		dp[0][0]=1;
		for(i=0;i<h2;i++)
		{
			for(j=0;j<=h1;j++)
			{
				if(i)
					dp[i][j]+=dp[i-1][j]*w1;
				if(j)
					dp[i][j]+=dp[i][j-1]*w2;
			}
		}
		double ans=0;
		for(i=0;i<h1;i++)
		{
			ans+=dp[h2-1][i]*w1;
		}
		printf("%.6lf\n",ans);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值