HDOJ 题目4034 Graph(逆向Floyd)

本文探讨了在给定每个顶点对之间的最短路径长度的情况下,如何重建原始有向图的问题。通过输入数据,我们展示了如何确定可能的边数,并在特定案例中给出了解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Graph

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 1992    Accepted Submission(s): 996


Problem Description
Everyone knows how to calculate the shortest path in a directed graph. In fact, the opposite problem is also easy. Given the length of shortest path between each pair of vertexes, can you find the original graph?
 

Input
The first line is the test case number T (T ≤ 100).
First line of each case is an integer N (1 ≤ N ≤ 100), the number of vertexes.
Following N lines each contains N integers. All these integers are less than 1000000.
The jth integer of ith line is the shortest path from vertex i to j.
The ith element of ith line is always 0. Other elements are all positive.
 

Output
For each case, you should output “Case k: ” first, where k indicates the case number and counts from one. Then one integer, the minimum possible edge number in original graph. Output “impossible” if such graph doesn't exist.

 

Sample Input
  
3 3 0 1 1 1 0 1 1 1 0 3 0 1 3 4 0 2 7 3 0 3 0 1 4 1 0 2 4 2 0
 

Sample Output
  
Case 1: 6 Case 2: 4 Case 3: impossible
 

Source
 

Recommend
lcy   |   We have carefully selected several similar problems for you:   4039  4038  4036  4033  4037 
  floyd的松弛部分是 g[i][j] = min(g[i][j], g[i][k] + g[k][j]);也就是说,g[i][j] <= g[i][k] + g[k][j] (存在i->j, i->k, k->j的边)。
ac代码
#include<stdio.h>
#include<string.h>
int map[1010][1010],v[1010][1010];
int main()
{
	int t,c=0,k;
	scanf("%d",&t);
	while(t--)
	{
		int n,i,j,ans,w=1;
		scanf("%d",&n);
		for(i=0;i<n;i++)
		{
			for(j=0;j<n;j++)
				scanf("%d",&map[i][j]);
		}
		ans=n*(n-1);
		memset(v,0,sizeof(v));
		for(k=0;k<n;k++)
		{
			for(i=0;i<n;i++)
			{
				for(j=0;j<n;j++)
				{
					if(k==i||j==k)
						continue;
					if(map[i][j]>map[i][k]+map[k][j])
					{
						w=0;
						break;
					}
					if(!v[i][j]&&map[i][j]==map[i][k]+map[k][j])
					{
						ans--;
						v[i][j]=1;
					}
				}
				if(!w)
					break;
			}
			if(!w)
				break;
		}
		if(w)
			printf("Case %d: %d\n",++c,ans);
		else
			printf("Case %d: impossible\n",++c);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值