HDOJ题目1492The number of divisors(约数) about Humble Numbers(数学)

本文介绍了一种计算特定类型整数——谦逊数——的约数数量的方法。谦逊数是指仅由2、3、5或7作为质因数构成的整数。文章通过示例解释了如何使用C++编程语言实现这一算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The number of divisors(约数) about Humble Numbers

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2538    Accepted Submission(s): 1231


Problem Description
A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble numbers.

Now given a humble number, please write a program to calculate the number of divisors about this humble number.For examle, 4 is a humble,and it have 3 divisors(1,2,4);12 have 6 divisors.

 

Input
The input consists of multiple test cases. Each test case consists of one humble number n,and n is in the range of 64-bits signed integer. Input is terminated by a value of zero for n.
 

Output
For each test case, output its divisor number, one line per case.
 

Sample Input
  
4 12 0
 

Sample Output
  
3 6
 

Author
lcy
 

Source
 

Recommend
LL   |   We have carefully selected several similar problems for you:   1496  1593  1722  1495  1493 
ac代码
	#include<stdio.h>
	int main()
	{
		int a[5]={2,3,5,7};
		__int64 n;
		while(scanf("%I64d",&n)!=EOF,n)
		{
			int i;
			__int64 s=1,b;
			for(i=0;i<4;i++)
			{
				b=1;
				while(n%a[i]==0)
				{
					b++;
					n/=a[i];
				}
				s*=b;
			}
			printf("%I64d\n",s);
		}
	}


 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值